首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
防屈曲耗能支撑通过在普通钢支撑的外围设置套管等约束机制,防止了普通支撑的受压屈曲而使得全截面达到受压屈服,提高了结构大震时的滞回耗能性能。通过合理的设计和制造.防屈曲耗能支撑可在罕遇地震发生时率先屈服.利用钢材良好的滞回耗能性能消耗地震输入的能量,保护桥梁主体结构免遭破坏。  相似文献   

2.
为了研究全钢管混凝土框架结构的抗震性能,对一榀单跨3层方钢管混凝土柱-矩形钢管混凝土梁框架结构进行拟静力试验,研究了该结构的滞回性能、延性、承载力与刚度退化、耗能能力等性能指标,并通过有限元模拟,分析了矩形钢管混凝土梁的受力机理.研究结果表明:此类全钢管混凝土框架结构滞回曲线饱满,延性系数大于3,层间位移转角在1/43~1/27之间,层间塑性变形能力随着框架柱长细比及梁柱线刚度比的增加逐渐减小,等效粘滞阻尼系数在0.115~0.441之间,强度退化不明显,但刚度退化较为明显;在加载过程中,梁端、柱根部屈服后,随着荷载的增加,中和轴向受压区逐渐移动,极限荷载时混凝土受拉区达到最大.  相似文献   

3.
为了研究不同数量暗支撑对型钢混凝土剪力墙的抗震性能影响,选取4个剪跨比为1.75的矩形截面型钢混凝土剪力墙试件进行了低周反复荷载下的试验研究(其中1个为普通剪力墙对比试件,3个为工字钢暗支撑剪力墙试件),对比分析了不同数量暗支撑条件下型钢混凝土剪力墙试件的破坏特征、承载力、刚度、延性、滞回特性及耗能能力.试验研究表明:带暗支撑型钢混凝土剪力墙试件的裂缝细密且分布区域较大,塑性铰发展充分,滞回曲线饱满,耗能能力明显提高;带暗支撑型钢混凝土剪力墙试件的屈服荷载和极限荷载相比普通剪力墙分别提高了88.76%和91.97%,极限位移角提高26.67%,抗震能力比对比试件显著提高.   相似文献   

4.
针对防屈曲支撑钢框架结构,建立了合理的弹塑性分析模型,选取了抗侧刚度比这一能够同时反映防屈曲支撑和框架结构特性的参量,分别对处于弹性状态及进入弹塑性状态的防屈曲支撑钢框架结构,进行了非线性时程分析并计算了结构的各项能量响应,同时还系统研究了抗侧刚度比对其能量输入和能量分配及地震响应的影响规律,并分析了抗侧刚度比的合理取值.  相似文献   

5.
为研究预制装配式双柱墩的抗震性能,利用有限元软件ABAQUS针对两类预制装配式双柱墩(RC/PC墩)进行模拟分析,通过改变设计参数,研究不同恒载轴力比、预加力轴力比及接缝面纵向钢筋配筋率对结构抗震性能的影响。研究表明:PC墩耗能能力显著优于RC墩;接缝面纵向耗能钢筋对耗能能力和抗剪承载力影响较大,钢筋配筋率越大,结构耗能能力越大,抗剪承载力越高,但剪切滑移量会增加;轴力比主要影响接缝面张开量和剪切滑移量,但对结构的自复位能力贡献不大。  相似文献   

6.
基于Pushover分析方法与滞回分析,探索柔性横系梁对钢管混凝土双柱式桥墩抗震性能的影响,采用非线性纤维梁柱单元,建立单柱墩、柔性横系梁双柱墩和刚性横系梁双柱墩模型,并进行计算对比分析,研究横系梁刚度的变化对墩顶位移能力、位移延性系数及滞回性能的影响。结果显示,随横系梁刚度增大,墩顶的位移延性能力减小,位移延性系数增大,桥墩水平承载能力提高,同时滞回耗能性能提高。  相似文献   

7.
从PEER数据库中选取7根钢筋混凝土柱在低周反复荷载作用下的试验数据,在分析了不同轴压比和配箍率下各试件的滞回特性、延性指标和割线刚度退化等的基础上,基于钢筋混凝土构件的Park-Ang双参数破坏准则,研究了构件损伤与耗能的关系、轴压比和配箍率对滞回耗能和损伤演化的影响。结果表明,轴压比较小和配箍率较高的试件,滞回曲线较为饱满,具有较好的延性性能;在一定范围内,增大轴压比或配箍率可以提高试件的屈服位移、屈服荷载和峰值荷载;加载前期,试件的损伤主要由位移首次超越引起,累积耗能对试件损伤影响相对较小,随着位移幅值的增大,累积耗能对试件损伤的贡献逐渐加大;配箍率相同的情况下,减小箍筋的间距对改善钢筋混凝土抗震性能有显著作用。  相似文献   

8.
根据门式刚架楔形H型钢柱失稳时局部和整体相关屈曲的特点,提出能考虑其相关屈曲特征和滞回性能的数值模拟方法.通过8根大宽厚比楔形钢柱的试验结果与数值模拟和理论数值解的比较表明,数值模拟方法是一种研究大宽厚比楔形构件滞回性能的有效方法.选取一组工程常用构件进行往复荷载作用下的数值模拟分析,比较腹板宽厚比的影响,认为此类构件具有一定的延性和耗能性能,证明《门式刚架轻型房屋钢结构技术规程》中的相关规定偏于不安全.  相似文献   

9.
为了研究低屈服点波形钢板剪力墙(corrugated steel plate shear wall,CSPSW)新型抗侧向荷载系统减震耗能性能,利用有限元软件ABAQUS,对16个CSPSW有限元模型进行横向单调和循环荷载作用下的减震耗能性能数值分析,并以波形钢板屈服强度和板厚为关键参数,综合分析其对结构抗侧性能、滞回性能、刚度退化、延性和能量耗散等性能的影响规律.研究结果表明:低屈服点CSPSW与普通钢板剪力墙初始刚度相同,但抗侧性能弱于后者;与普通屈服强度CSPSW相比,低屈服点CSPSW滞回曲线更饱满,耗能性能更好,且延性更好;随着波形钢板屈服强度降低,低屈服点CSPSW延性和耗能性能均提高,结构水平刚度退化加快;随着波形钢板厚度增大,低屈服点CSPSW初始刚度和结构耗能性能均提高,承载能力变化较小.  相似文献   

10.
不同洞口位置节能砌块隐形密框墙体抗震性能   总被引:3,自引:0,他引:3  
为了研究节能砌块隐形密框复合墙体的破坏形态及滞回性能、刚度退化、延性和耗能能力等抗震性能,以门洞位置为变化参数,设计制作了6个缩尺比例为1/2的墙体试件,进行了低周往复加载试验. 首先,通过对比、总结的方法,得出了试件的破坏形态并分析了其滞回性能;其次,采用切线刚度计算方法,对比分析了各试件刚度退化规律;然后,通过图解法确定屈服位移,并利用公式计算位移延性系数,从而分析判断各试件的延性性能;最后,采用等效粘滞阻尼系数的计算方法研究试件的耗能能力. 研究结果表明:在低周往复加载下,配筋合适的开洞复合墙体往往会发生剪压破坏,其破坏过程可分为弹性、弹塑性和破坏3个阶段;墙体试件的滞回曲线形状较为饱满,能表现出开洞的墙体会有良好抗震性能;中开洞墙体其骨架曲线下降段更为平缓,比偏开洞墙体的抗震性能更好;开洞位置越接近墙体的中间部位,墙体在弹塑性阶段刚度的有利贡献就越大,其变形能力也会越强;6个试件的延性系数均大于3,满足抗震规范要求,开洞位置越接近墙体中间的试件延性越好,其等效粘滞阻尼系数也越大,其耗能性能也越好;确定了墙体在不同性能目标时的变形容许值,为设计该类墙体提供理论基础.   相似文献   

11.
针对矩形截面、圆形截面和圆端形截面三种不同截面形式的铁路桥墩,采用ANSYS软件对其建立了滞回分析模型,并对这三种截面桥墩的抗震性能进行了研究,分析了不同截面形式下桥墩的位移延性系数、刚度退化和耗能能力.结果表明:三种截面形式的桥墩,圆端形截面桥墩的位移延性系数和极限位移最大,表现出较好的延性性能;桥墩最终破坏时,圆端形截面桥墩的刚度退化速率最慢,累积耗能最大.在轴压比、剪跨比、配筋率和配箍率均相同情况下,圆端形截面桥墩有较好的延性性能、刚度退化速率最慢、累积耗能最多,建议在地震区采用圆端形截面桥墩.  相似文献   

12.
为研究不同连接方式装配式混凝土桥墩的抗震性能,进行了2根装配式混凝土桥墩(连接构造分别为钢管剪力键和灌浆套筒)和1根现浇整体式混凝土桥墩的拟静力试验,分析对比试件的滞回曲线、骨架曲线、延性、刚度退化和耗能能力,采用ABAQUS通用程序建立有限元模型,并开展了有限元参数分析. 研究结果表明:3类桥墩试件水平荷载-位移滞回曲线较饱满,具有良好的抗震性能,均为整体压弯破坏,无明显的强度退化,累积耗能能力相近;在不同轴压比、长细比、混凝土强度和钢筋强度条件下,带钢管剪力键的装配式混凝土桥墩的水平峰值荷载和位移延性系数均优于传统灌浆套筒连接的装配式桥墩,提高幅值分别为4%~32%和8%~36%;轴压比、长细比、钢管剪力键嵌入深度和钢管直径是影响钢管剪力键连接的装配式混凝土桥墩抗震性能的重要参数.   相似文献   

13.
为解决高烈度区常规屈曲约束支撑减震体系地震作用较大,结构抗震性能欠佳的问题,提出同时采用普通型和早耗能型屈曲约束支撑的两阶段减震体系.结合高烈度区工程算例,以小震时结构具有相同侧向变形为原则,分别设计了常规屈曲约束支撑体系和两阶段耗能支撑体系,并采用SAP2000建立相应的数值模型.结合模态、小震下的反应谱、弹性时程和大震下的弹塑性时程对两阶段耗能屈曲约束支撑减震体系的减震效果进行了分析.结果表明,同常规屈曲约束支撑减震体系相比,两阶段耗能屈曲约束支撑减震体系的刚度降低,地震作用显著减小,塑性铰的发展得到推迟,而且屈曲约束支撑的出力显著减小,结构整体的抗震性能明显提高.   相似文献   

14.
带滞变支撑悬臂输流管的稳定性   总被引:1,自引:1,他引:0  
为了研究带滞变支撑输流管的非线性动力特性,基于Hamilton原理将滞变支撑的虚功引入管道的能量方程,导出了该系统的动力学方程,编制了相应的数值计算程序,研究了输流管的复杂动力响应及滞变特性参数对系统动力特性的影响.结果表明:带滞变支撑的悬臂输流管表现出极其复杂的动力学行为,当无量纲流速相继达到9.5、14.6、15.5与17.2时,结构响应将分别呈现屈曲、颤振、混沌以及跳跃现象;支撑的耗能特性越强,系统的复杂响应参数范围越宽.  相似文献   

15.
为了评价FRP约束RC空心墩的抗震性能,设计并制作了5个未约束和FRP约束矩形空心墩,并进行了恒轴压、水平单向低周反复荷载下的拟静力试验。通过对比分析了不同试验墩的滞回曲线、水平力和延性、总耗能和耗散系数。结果表明:FRP约束矩形空心墩的塑性铰区,可提高其抗侧刚度、改善其耗能能力和延性、提高其变形能力,且空心墩的抗震滞回耗能能力较稳定,但是,对水平力的影响较小。此外,耗散系数与总耗能的变化趋势不同,因此,评价RC空心墩耗能能力时,应综合考虑总耗能和耗散系数。  相似文献   

16.
为研发一种自复位功能的刚性滑板-复位橡胶隔震支座,对支座刚性承压滑移元件摩擦特性、免承压复位橡胶块剪切特性和整体支座的力学性能进行了试验研究,并采用ABAQUS有限元模型分析了整体支座的力学特性.研究结果表明:刚性承压滑移元件动摩擦系数在0.020~0.027之间、免承压复位橡胶元件的水平等效刚度为129.33 kN/m;刚性滑板-复位橡胶隔震支座的塑性变形能力较强,具有很好的耗能性,该支座在小剪切位移下,会是一种稳定性良好的隔震支座.  相似文献   

17.
为考察K型方钢管节点主管中填充混凝土对节点抗震性能的影响,对1个K型方钢管节点(空管节点)以及1个节点主管中填充混凝土的K型方钢管混凝土节点进行低周反复荷载试验,根据试验数据,对节点的破坏模式、滞回性能、承载力、延性、刚度和耗能能力进行对比分析。结果表明:K型方钢管节点主管中填充混凝土后,提高了节点的承载力、延性、刚度,但却降低了节点的耗能能力。  相似文献   

18.
为了准确模拟RC (reinforced concrete)矩形空心桥墩的刚度退化特性,为桥梁震后可恢复性能研究提供理论基础,进行了不同设计参数的14个RC矩形空心墩模型拟静力试验. 通过引入峰值位移影响系数体现刚度退化与峰值位移的关联,建立修正的Bouc-Wen-Baber-Noori (BWBN)滞回模型;基于粒子群-引力搜索混合智能优化算法(combination of particle swarm optimization and gravitational search algorithm,PSOGSA)识别实测滞回曲线对应的滞回参数,并建立桥墩设计参数与滞回参数间的对应关系,进而总结滞回参数的经验预测方法. 研究结果表明:修正的BWBN滞回模型曲线与实测滞回曲线吻合程度高,相关性系数在0.98以上,且新型滞回模型能准确地反映出桥墩侧向刚度随墩顶位移退化的特性;PSOGSA算法能精确地识别实测滞回曲线的模型参数;采用经验预测方法得到的模型曲线与实测滞回曲线的相关性系数为0.83,该方法适用于缺乏实测滞回曲线的桥墩.   相似文献   

19.
以H型钢-RC阶梯桩模型试验为背景,进行了2根H型钢-RC阶梯桩(HS-RC-0.25、HS-RC-0.50)及1根H型钢桩(HS)的低周往复荷载拟静力试验;在桩顶施加水平位移荷载,埋设应变片与土压力计,采用特殊设计的桩身水平变位测试方法,得到了H型钢-RC阶梯桩桩身破坏特点、沿桩深方向的桩身水平位移与应变、骨架曲线和滞回性能曲线;利用OpenSEES对比分析了桩顶自由与固定条件下阶梯桩桩顶水平变位能力,得到了阶梯桩水平承载力折减系数与转化系数,对比了利用折减系数得到的模型桩水平承载力计算值与试验值。试验结果表明:H型钢桩的桩顶弹性变形为2~25 mm,其水平变形能力强,承载能力好,加载全过程滞回环饱满,耗能效果好;刚度比对阶梯桩的破坏模式无显著影响,阶梯桩的上段钢桩均无明显的屈曲破坏,变截面处混凝土严重剥落且破坏位置相同;随刚度比增大,阶梯桩-土体系屈服位移及屈服荷载均提高,HS-RC-0.25较HS-RC-0.50桩顶屈服位移减小了29.15%,桩身应变突变减小;阶梯桩的滞回环在加载初期因为滑移表现为捏拢状,而在加载后期过渡为饱满的梭形,耗能效果良好,HS-RC-0.50加载全过程的耗能比HS-RC-0.25多25.4%,具有较好的水平变形能力;对比试验值,HS-RC-0.25的计算误差为-9.68%,HS-RC-0.50的计算误差为-2.47%。可见,HS-RC阶梯桩能满足整体桥桩基的水平变形需求,利用折减系数能较好地计算阶梯桩的水平承载力特征值。   相似文献   

20.
钢筋混凝土柱是结构的主要承重构件,为更有效提高试件的抗震加固效率,提出采用不同高度的水泥基灌浆料及钢丝网(CGMM)加固思路。试验制作3根钢筋混凝土圆柱进行低周反复加载,主要介绍了试验过程,分析研究各试件破坏机理、滞回性能、延性、耗能能力及刚度退化。试验结果表明:CPRP1,CPRP2试件较CP试件抗震能力有显著提高;加固高度不同的试件,随CGMM加固层的增高,试件峰值荷载、延性、耗能均增大,刚度退化减缓。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号