首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
土工格栅的最不利状态并不是在使用环节,而是在土工格栅铺设过程中,因此在确定土工格栅的长期强度时必须考虑的主要因素是土工格栅在铺设施工和填料碾压过程中受到的损伤。通过分析国内的一些土工格栅施工机械损伤试验数据和影响损伤的不同因素,给出了计算土工格栅机械损伤折减系数的分项系数,并提出了计算土工格栅施工机械损伤折减系数的计算公式和修正方程。研究成果对确定土工格栅的长期强度具有指导意义。  相似文献   

2.
土工格栅是现代土木工程建设中十分常用的一种新型土工材料,可据具体应用途径及工程实际施工建设需求的不同选用不同材料进行合成,土工格栅在土木工程建设的应用中,表现出了一系列良好的性能优势。介绍了土工格栅作用机理及分类特点,探讨土工格栅在路基工程中的应用。  相似文献   

3.
土工格栅强度损伤特性的试验研究   总被引:1,自引:2,他引:1  
针对国内对土工格栅铺设损伤的研究所得出的多是一些定性结论,缺乏定量结论的问题,展开了土工格栅强度损伤特性的试验研究.通过对应用于公路路堤加筋的工程条件下的4种不同类型、不同原材料的土工格栅的铺设损伤模拟试验,得到了在5种典型路堤填料下的几种典型土工格栅的强度损伤特性,并给出了相应的土工格栅铺设损伤强度折减系数的建议值.  相似文献   

4.
为探讨土工格栅网孔形状对筋土界面特性的影响,选取网孔尺寸和力学特性相近的三角形网孔土工格栅和矩形网孔土工格栅进行了拉伸试验.基于拉拔阻力、筋土界面抗剪强度、界面表观摩擦系数及格栅肋条变形等参数的变化规律,对不同法向压力及拉拔方向工况下格栅网孔形状对筋土界面特性的影响进行对比分析,结果表明:三角形网孔土工格栅对砂土颗粒侧向位移的限制大于矩形网孔土工格栅;对于三角形网孔土工格栅,工况TX_0和工况TX_90的峰值摩擦角分别为48.2°和38.2°,矩形网孔土工格栅工况SS20的峰值摩擦角仅为35.9°;拉拔过程中,三角形网孔土工格栅的横向肋条和对角线肋条出现了不同程度的挠曲变形,矩形网孔土工格栅的肋条主要为纵肋拉伸变形.  相似文献   

5.
超静定土工格栅的测试在现行规范中难以找到明确的测试方法。为了对超静定土工格栅的强度力学性能进行测试研究,对超静定土工格栅采取了7种不同种方案的拉伸试验测试。试验结果表明:1超静定土工格栅的单向土工格栅多条受力时呈现出以上一级(少于此多条格栅一条的多条格栅)的单根格栅折算强度的大约90%增加;2建议现行相关规范中土工格栅单条法计算拉伸强度时试样最大拉力应乘以一折算系数,对于本实验中的超静定土工格栅,所乘折算系数取为10(1-0.9^N),N为样品每米宽度上的肋数;3本研究中的超静定土工格栅的超静定作用使得单根格栅折算强度提高1.03%~14.06%,效果明显,建议更多超静定土工格栅的生产与应用。  相似文献   

6.
筋土界面摩擦特性影响因素分析   总被引:2,自引:0,他引:2  
以整体式单向聚乙烯土工格栅与钢塑复合加筋带为加筋材料,以含细粒土砂为填料,设计了高速公路拓宽工程加筋边坡。通过室内拉拔试验对填料在不同含水量和不同压实度条件下与土工格栅之间的摩擦特性进行分析,并对比了原样土工格栅、去除横肋的土工格栅和土工加筋带三者之间的界面摩擦特性。分析结果表明:在填料含水量高于填料的最佳含水量时,筋土界面强度随着含水量增加而降低,且变化明显,随着填料压实度的提高而不断增强,加筋效果也明显增强;土工格栅的横肋对筋土界面特性影响非常明显,贡献率高达50%以上。  相似文献   

7.
介绍土工格栅定义、目前应用最广的四类土工格栅的特性以及土工格栅作用原理,并根据土工格栅的优点简述了其在公路工程中的应用.  相似文献   

8.
土工格栅加筋土挡墙施工工况有限元分析   总被引:3,自引:0,他引:3  
介绍了土工格栅加筋土挡墙的结构特征,及土工格栅加筋土的有限元分析原理,并用Mohr-Coulomb模型作为加筋土中的土体的计算模型,用线弹性模型模拟土工格栅,用Goodman单元模拟土体和土工格栅之间的接触关系,对一典型工程实例的施工状态进行了有限元分析,得到了土工格栅加筋土挡墙不同施工阶段的受力和变形特征。计算结果表明,加筋土挡墙的破裂面是一条圆弧面,挡墙在填土过程中安全系数逐渐减小,基底应力分布和筋材拉力与实测值吻合较好,证明了该有限元分析方法的可靠性。  相似文献   

9.
采用ABAQUS软件建立了低路基桩网结构的动力有限元模型,通过实测数据验证模型的合理性,分析了列车动荷载-土工格栅-桩-土之间的相互作用机理,研究了动荷载作用下土工格栅受力与变形规律。研究结果表明:沿线路纵向,车载作用前,桩顶土工格栅竖向变形后形状为倒"U"形,竖向变形约为2.27mm,桩顶土工格栅的拉力分布呈"M"形,桩间土工格栅的拉力分布呈倒"V"形;车载作用后,桩顶土工格栅竖向变形增量约为0.10mm,大于桩间土工格栅变形,桩顶土工格栅动位移大于桩间土工格栅动位移,桩顶边缘土工格栅拉力增量最大,桩顶中心土工格栅拉力增量较小,桩间土工格栅拉力增量最小,四桩间土工格栅拉力增量大于两桩间土工格栅拉力增量;沿路基横断面,车载作用前,路基中心土工格栅竖向变形约为12.0mm,车载作用后,格栅竖向变形的增量从路基中心至坡脚逐步减小,其竖向变形增量约为0.47mm;桩顶和桩间土工格栅动位移和动拉力整体分布规律相似,从路基中心到坡脚呈递减规律,坡脚处土工格栅动拉力为负;横断面土工格栅竖向变形增量和最大动拉力均大于线路纵向土工格栅。  相似文献   

10.
本文通过单向土工格栅在路基应用中的试验及试验分析,总结在不同坡比、不同加筋层数等工况下,路基受荷后的变形特征,得出土工格栅加筋结构能够大幅提高路基稳定性和承载能力的研究成果。该成果能够为土工格栅在路基工程实践中的应用提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号