首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了在细观尺度下模拟沥青混合料的断裂过程,借助数字图像技术获取了1.18 mm粒径以上的沥青混合料细观结构,运用离散元程序PFC2D内置"Fish"语言,构建了包含粗骨料、沥青胶浆和空隙在内的沥青混合料非均质虚拟试件,对虚拟试件微观组成成分之间的接触赋予了相应的微观接触模型,采用离散元方法实施了单边切口小梁虚拟3点弯曲试验。研究结果表明:自定义时步大小功能可以大幅提高非均质离散元模型的运算效率;采用沥青胶浆动态模量作为静态模拟时接触刚度所对应宏观参数更为合适;参数校准后模拟得到的整体断裂响应与室内试验结果之间的联系较好;仅采用试件单面图像信息构建模型进行力学性能预测缺乏可信度;基于离散元程序的虚拟试验方法可以作为研究沥青混合料断裂行为的辅助手段。  相似文献   

2.
为了从细观角度模拟分析沥青混合料的低温开裂行为,选取了4种集料类型、4种矿料级配类型,运用颗粒流程序PFC2D内置"Fish"语言,重构了包含沥青砂浆和粗集料在内的沥青混合料细观数字试件,采用离散元方法实施了虚拟劈裂试验。研究结果表明:离散元模拟得到的劈裂抗拉强度与室内试验结果的匹配程度较好;试件在加载至峰值荷载前,内部已萌生一定数量微观裂纹,极值点荷载后微观裂纹数量大幅增加;高强度集料组成的混合料基本沿着集料与砂浆的界面发生破坏,低强度集料则部分会被裂纹贯穿;基于颗粒流程序的虚拟劈裂试验可以作为研究沥青混合料断裂特征的辅助手段。  相似文献   

3.
文章选取了4种典型矿料级配成型沥青砂浆,引入了离散单元法和Burger''s自定义接触本构模型,采用室内试验与数值模拟相结合的方法,进行了不同温度与频率条件下的沥青砂浆动态模量试验。研究结果表明:离散元方法和Burger''s接触模型能够较好地实现沥青砂浆动态模量虚拟试验;轴向应变幅值随荷载作用呈现增大趋势,砂浆相比混合料具有更显著黏弹性;细集料增多会提高砂浆抗变形能力,沥青用量增大则加剧砂浆蠕变变形;离散元模拟与室内试验动态模量总体匹配较好,油石比较大的砂浆模拟结果与室内试验误差更小;沥青砂浆动态模量主曲线呈现出较为均匀的变化,验证了砂浆类似均质材料的特征。  相似文献   

4.
沥青混合料抗车辙性能的分形描述方法   总被引:9,自引:0,他引:9  
为了准确模拟沥青混合料抗车辙性能,采用分形理论分析了沥青混合料微观结构,研究了粗细集料不同级配分形维数对沥青混合料抗车辙性能的影响,并根据级配分形维数公式计算了沥青混合料的分形值,进行了沥青混合料车辙试验和微观结构的电子扫描。分析结果表明:4.75 mm通过率是集料尺度的分界点,集料分形维数与抗车辙性能有一致相关性,分形值越大,抗车辙能力越高;根据路用性能设计集料级配可以定量地分析沥青混合料的级配差异和路面性能,及路面微观结构与宏观路用性能的关系。  相似文献   

5.
分析了沥青混合料分子模拟技术的基本原理、主要实现手段和模拟流程, 研究了沥青分子模型构建的2类主要方法, 总结了不同时期的沥青质结构模型与不同应用场合中的集料模型, 探讨了沥青扩散现象、外加剂对沥青性能的影响机理、沥青与再生剂的融合、沥青-集料的界面作用模拟影响因素以及水、沥青老化等因素对沥青-集料黏附性的影响等问题, 展望了沥青路面材料分子模拟技术的未来研究方向。研究结果表明: 分子模拟技术可以从微观角度探究道路工程材料的性能变化与内在机理, 为材料的精确设计和定量分析奠定基础; 分子组装法是目前沥青分子模型构建的重要思路, 能够有效表征沥青材料的物化和力学特性; 集料模型的构建思路主要是根据集料的化学成分来选择构建相关晶胞, 进而代表集料的宏观特性; 分子模拟技术动态展现了沥青的扩散过程, 体现了内部各组分的扩散速率; 利用分子模拟技术可以分析沥青自愈行为的过程, 并提出不同指标来表征了各个阶段的愈合速率; 借助分子模拟技术, 可以从微观角度解释和分析沥青内部组分和外加剂对沥青性能影响; 在沥青-再生剂融合研究中, 分子模拟技术可表征再生剂扩散深度、掺入时机与再生机理等问题; 在沥青-集料界面作用研究中, 分子模拟技术可表征材料的化学组成、加载模式、模型参数与界面接触等因素的影响; 水、温度与沥青的老化等因素将会对沥青-集料界面作用产生重要影响, 通过构建含水模型可将微观模拟与宏观试验联系起来。   相似文献   

6.
为揭示排水沥青混合料单轴静态蠕变试验的细观力学机制,综合室内试验和数值模拟相结合的方法,采用图像识别技术获取车辙板粗集料及孔隙细观信息,并基于离散元建立单轴静态蠕变试验模型,围绕沥青模量、粘结强度和混合料孔隙率等3个因素对排水沥青混合料高温性能的影响开展了研究。结果表明:在相同的外荷载作用时间下,模量对永久变形的降幅影响略大于蠕变柔量,模量由1倍提升至5倍,蠕变柔量约降低3.7倍,永久变形降低约4.7倍;模量增大至4倍后,永久变形量和蠕变柔量的降幅趋于平缓;空隙率由18%提升至22%,蠕变柔量和永久变形量均增大约40%,混合料耐久性明显降低,空隙率18%-19%阶段对永久变形和蠕变柔量的增幅较为平缓,19%-22%阶段永久变形和蠕变柔量的增幅增大,且接近线性关系;混合料承载力随粘结强度提高而增大,不同粘结强度(280、300、500 N)对永久变形量和蠕变柔量的影响基本一致,且低粘结强度(250~300 N)对永久变形量和蠕变柔量的影响远大于高粘结强度(300~700 N)。在影响蠕变柔量与永久变形计算值可靠度的3个因素中,按可靠度高低排序依次为:粘结强度、空隙率、模量。  相似文献   

7.
基于数字图像处理技术来研究沥青混合料的细观结构,回顾沥青混合料细观结构静态及动态识别的研究进展,其后列出一幅数字图像处理技术流程图并对获取沥青混合料内部结构图像方法(X-ray CT技术)进行了详细介绍;对通过图像处理技术来描述混合料内部结构特征,即集料形状及分布、接触特性和空隙分布规律等方面的研究进展情况进行论述,介绍了运用有限元、离散元和边界元这3种数值模拟方法及有关沥青混合料细观力学特征的虚拟试验.研究表明:X-ray CT无损伤扫描技术能较好识别沥青混合料内部细观结构特征;数值模拟结合有限元、离散元或边界元法能将沥青混合料内部细观结构与其宏观性能之间建立有机联系;虚拟试验应用能很好帮助理解宏观试验结果.在集料形状与分布研究中,尚未形成统一的评价指标,且不同研究人员采用不同的评价指标;X-ray CT技术精度问题和适用范围还需进一步改善;集料、沥青胶浆和空隙这3者之间还未建立有效的区分方法.通过总结数字图像处理技术对沥青混合料细观结构的应用,以期为后续关于沥青混合料宏观-细观-微观研究提供参考.  相似文献   

8.
基于数字图像处理技术来研究沥青混合料的细观结构,回顾沥青混合料细观结构静态及动态识别的研究进展,其后列出一幅数字图像处理技术流程图并对获取沥青混合料内部结构图像方法(X-ray CT技术)进行了详细介绍;对通过图像处理技术来描述混合料内部结构特征,即集料形状及分布、接触特性和空隙分布规律等方面的研究进展情况进行论述,介绍了运用有限元、离散元和边界元这3种数值模拟方法及有关沥青混合料细观力学特征的虚拟试验.研究表明:X-ray CT无损伤扫描技术能较好识别沥青混合料内部细观结构特征;数值模拟结合有限元、离散元或边界元法能将沥青混合料内部细观结构与其宏观性能之间建立有机联系;虚拟试验应用能很好帮助理解宏观试验结果.在集料形状与分布研究中,尚未形成统一的评价指标,且不同研究人员采用不同的评价指标;X-ray CT技术精度问题和适用范围还需进一步改善;集料、沥青胶浆和空隙这3者之间还未建立有效的区分方法.通过总结数字图像处理技术对沥青混合料细观结构的应用,以期为后续关于沥青混合料宏观-细观-微观研究提供参考.  相似文献   

9.
三轴重复荷载作用下AC-13沥青混合料永久变形试验分析   总被引:2,自引:1,他引:1  
采用半正弦波间歇荷载,使用MTS(Material Test Systerm)材料试验机对AC-13沥青混合料进行三轴重复荷载蠕变试验,研究试验温度和应力水平对沥青混合料永久变形特性的影响,得到了AC-13沥青混合料在不同温度和不同应力水平下的永久变形规律,对永久应变与荷载作用次数、应力水平和温度的关系进行非线性回归分析,提出来能够全面反映沥青混合料永久变形特性的模型,并绘制了不同温度下的三维图形,直观全面地反映沥青混合料变形的特性。  相似文献   

10.
通过静态回弹模量试验,研究了不同级配类型高模量沥青混凝土的回弹模量,并由此建立ANSYS有限元沥青路面结构模型,计算分析中面层厚度、荷载作用大小、面层材料等因素对沥青路面永久变形的影响。研究结果表明:掺加PR-Module改性剂的高模量沥青混合料比普通沥青混合料可明显提高其回弹模量;单纯增加中面层的厚度对提高路面抵抗永久变形性能的效果并不显著;中面层采用高模量沥青混合料对降低路面永久变形的效果相对较好;荷载作用特别是重载超载对路面永久变形影响较大,高模量沥青混合料对降低重载超载作用下路面永久变形效果更为明显。  相似文献   

11.
沥青混合料变形的粘弹塑性本构模型研究   总被引:1,自引:0,他引:1  
为了正确预估沥青混合料的永久变形,提出利用基于Drucker-Prager屈服条件、"时间硬化"幂函数蠕变法则的线性Drucker-Prager蠕变模型对单轴静载蠕变试验的沥青混合料变形进行粘弹塑性有限元分析.通过对比沥青混合料的静载蠕变试验解析解和有限元解的一致性,发现线性Drucker-Prager蠕变模型适合于描述破坏阶段出现较晚的沥青混合料的蠕变性能,可用于预测沥青混合料的永久变形,进而研究沥青混合料的抗车辙性能.  相似文献   

12.
通过沥青混合料车辙试验、动载压入试验、低温弯曲试验和浸水马歇尔试验等,确认从粗集料、细集料、填充系数三要素出发,研究推荐的抗辙沥青混合料具有较好的高温稳定性、低温抗裂性和水稳定性。相对AC-16I型沥青混合料,所推荐的沥青混合料具有较高的抵抗永久变形的能力,抗车辙性能良好。  相似文献   

13.
为研究微观条件下橡胶颗粒沥青混合料的受力及变形,运用离散元软件PFC2D分别对两种级配类型的橡胶颗粒沥青混合料建立离散元随机模型,分析了橡胶颗粒沥青混合料在荷载作用下的受力情况与变形规律。得出结论:两种级配类型橡胶颗粒沥青混合料的变形能力均较大,承载力均较低,在工程运用中应结合实际情况合理选择;连续级配橡胶颗粒沥青混合料的承载能力小于间断级配;连续级配橡胶颗粒沥青混合料的变形能力小于间断级配。  相似文献   

14.
为评价集料类型对细集料沥青混合料微观形貌的影响,采用三维景深显微镜和扫描电子显微镜深入研究了当集料选用石灰石、辉绿岩或钢渣时细集料沥青混合料的微观形貌。宏观上看,石灰石和辉绿岩砂粒式混合料表面较为光滑,钢渣砂粒式混合料表面较为粗糙,表面颜色差异较为明显。结果表明:石灰石砂粒式沥青混合料表面集料沙化,集料裸露,由黏附失效和黏聚失效共同主导;辉绿岩砂粒式沥青混合料表面褶皱,沥青和集料相间分布,黏聚失效占主导;钢渣砂粒式沥青混合料表面反光区域较多,为钢渣切割面,少量区域存在空隙,黏附失效占主导。三维景深结果与扫描电镜结果很好地吻合,因此,利用三维景深和扫描电子显微镜均可很好地评价砂粒式沥青混合料的微观形貌,特别是微区失效特性。  相似文献   

15.
车辙已经成为我国高等级公路不可忽视的损坏类型之一。就不同温度下沥青混合料抵抗永久变形的能力分别采用APA和单轴贯入试验进行分析。结果表明虽然APA试验能够区分普通沥青混合料在不同温度下抗永久变形特性,但不能评判不同温度下的SBS改性沥青混合料的抗永久变形特性。由于单轴贯入试验可以模拟实际路面的受力状态,同时其试验结果与实际路面车辙变形也具有良好的相关性,并且,单轴贯人试验还可以较好地区别不同沥青混合料,包括SBS改性沥青混合料,在不同温度下的抗永久变形特性。因此建议研究沥青混合料抗永久变形性能时应选择单轴贯入试验。  相似文献   

16.
为研究橡胶沥青再生混合料路用性能,通过橡胶沥青微观性能试验分析橡胶沥青改性机理;同时通过测试不同种类沥青和胶粉与集料之间的粘结力,从力学分析方面分析橡胶沥青的粘结性性能;最后通过对橡胶沥青再生料路用性能进一步研究评价,研究表明橡胶沥青再生料性能显著优于规范普通沥青混合料和改性沥青混合料,且高温性能优异。  相似文献   

17.
根据新拌沥青混合料细观力学研究现状,提出了基于三维离散元方法和虚拟图像技术的再生沥青混合料细观力学仿真思路,并介绍了实现过程.利用虚拟图像技术,生成基于再生沥青混合料细观结构的虚拟试件,建立了离散元细观模型,提出了细观模型参数的确定方法.利用再生沥青胶浆单轴静态蠕变试验,获得了再生沥青胶浆的细观模型参数.依据时温等效原理,进行了粘弹性参数转换,以提高模型的计算效率.采用PFC3D离散元方法,利用PFC自带的FISH语言,编制相应的程序,输入转换后得到的模型参数.使用模型参数模拟再生沥青混合料单轴静态蠕变的虚拟试验,并与再生沥青混合料室内试验结果进行对比,验证了虚拟试验的合理有效性.  相似文献   

18.
运用美国公路战略研究计划(SHRP)中的恒高度重复剪切试验考察了沥青混合料高温永久变形过程.通过剪切试验,分析了影响沥青混合料高温性能的各种因素,为沥青混合料在我国道路中的应用研究提供了参考.  相似文献   

19.
细集料对沥青混合料性能起着至关重要的作用.对采用石灰岩机制砂、玄武岩机制砂和不同掺量的天然砂共5种细集料的沥青混合料进行性能评价,主要是对沥青混合料的高温稳定性能、水稳定性进行了系统的试验,分析了几种细集料对沥青混合料性能的影响,提出了在沥青混合料配合比设计中细集料的选择原则,推荐出了最佳的细集料类型.  相似文献   

20.
沥青玛蹄脂碎石混合料级配试验研究   总被引:3,自引:0,他引:3  
为了研究沥青玛蹄脂碎石混合料 (SMA)的级配组成 ,笔者采用配方均匀设计方法对粗集料间隙率VCA的影响因素进行了试验研究 ,对VCA试验数据进行了回归分析 ,得到了粗集料的合理配比组成 ;利用沥青裹覆集料试验确定了最小沥青用量 ,用体积法和填充理论对细集料和矿粉的组成进行了分析 ,并对设计的混合料的路用性能给予了试验验证 .结果表明 :文中设计的SMA级配混合料具有优良的路用技术性能 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号