首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 515 毫秒
1.
通过流动可视化方法观察了两个不同旋转方向涡的干涉过程.实验表明:不同旋转方向的两个涡系相互干涉时合成涡系的强度有减弱趋势,离装涡产生器表面较近的纵向切面上合成涡系的强度减弱程度较小,在离装涡产生器表面较远的纵向切面上合成涡系的强度减弱程度较大,中心切面上合成涡系的强度减弱程度居中.  相似文献   

2.
扁管翅片通道中涡干涉及其对换热性能的影响   总被引:2,自引:0,他引:2  
涡强化扁管管片散热器通过涡产生器形成的涡来增强流体在横断面上的二次流及其扰动,从而强化了换热.通过数值模拟的方法对涡强化扁管管片散热器中涡产生器形成的涡的相互干涉及其对散热器换热性能的影响进行了研究分析,结果表明,当涡产生器的交错系数Sr在一定范围内,由上游涡产生器产生的涡与下游涡产生器产生的相反方向的涡发生干涉,由于涡的干涉在未带涡产生器的肋片表面附近涡的强度明显减弱,从而导致了未带涡产生器肋片表面的换热性能的降低.  相似文献   

3.
以空气为介质,在Re=500~2 100的范围通过数值模拟的方法对涡强化扁管管片散热器中涡产生器形成的涡的相互干涉及其对散热器流动与换热性能的影响进行了研究分析.说明了当涡产生器呈线性布置而涡产生器的数量发生变化时对横截面上平均Nu数和涡旋强度Γ的影响,并对在本文所采用的模型参数下加装涡产生器的最佳数量进行了探讨.  相似文献   

4.
涡产生器可装在管片式散热器的翅片表面,是一较好的强化传热粗糙元.但目前的研究主要集中在对平直涡产生器的研究,对曲面涡产生器的研究非常少.以空气为工质,分别对3种不同管间距的光板板芯及对应装有不同高度曲面涡产生器的板芯在不同板间距时的空气流动阻力做了实验研究.实验结果表明:在不同管间距、板间距时,板芯装涡产生器阻力系数均比光板板芯的阻力系数大,并且在低雷诺数时的增幅比较大,随着雷诺数的提高,阻力系数逐渐降低并趋于平缓,且阻力系数增幅大大减少.  相似文献   

5.
涡产生器强化圆管管片式换热器传热数值分析   总被引:1,自引:1,他引:0  
涡产生器式管片式换热器有着不同于传统管片式换热器的强化传热机理,其结构简单,强化传热效果明显.用数值方法分析了涡产生器式圆管管片式换热板芯单个圆管翅片区域内的传热与阻力性能.计算结构根据某实际换热器结构放大确定,计算时选取Re范围为100~30 000.分析了平直翅片与涡产生器翅片传热单元局部及平均传热特性.单根圆管翅片单元有两个低换热区,涡产生器可增强圆管尾部的换热.两种换热板芯的传热能力均虽Re的增加而提高,在中等Re范围内,涡产生器可使传热有较大提高,而阻力增加较小.  相似文献   

6.
用数值模拟方法研究了在矩形通道底壁安装矩形涡产生器对(RWP)时纵向涡对层流换热的影响.在雷诺数变化范围为500~7 000,通道底壁安装RWP和不安装RWP两种情况下,比较了流体流动和换热性能.同时对涡产生器的高度和攻角对表面换热性能的影响也做了研究.结果表明:通道的底壁安装RWP可以显著提高换热性,雷诺数越大,换热性越强.随着涡产生器高度的增大,换热性增强,但阻力系数会急剧增加.当攻角为29°时,强化换热效果是最强的.  相似文献   

7.
针对高速列车转向架区域的积雪问题, 建立了包含精细化转向架的列车空气动力学模型; 采用分离涡模拟方法, 对运行速度为350 km·h-1的高速列车周围空气流场进行了模拟, 分析了空气流场特性对车底与转向架区域雪粒输运的影响; 提取了涡核线, 研究了转向架区域的涡流特征与雪粒输运的关系。研究结果表明: 车底气流主要由前后轮对后部向上翻转进入转向架区域, 绕轮轴形成旋转气流; 转向架底部区域涡量大于1 000 s-1, 涡流基本为纵向; 转向架顶部区域涡量小于200 s-1, 涡流基本为纵向; 转向架轮对与前后端墙的空隙处涡流多为竖向, 且后部轮对处的涡量较前部轮对处大5倍以上; 转向架内部区域涡量小于200 s-1, 涡流走向杂乱; 涡流的尺度、强度与走向特性反映出进入转向架区域的气流具有较强的挟带雪粒的能力, 而流出转向架的气流挟带雪粒的能力较弱; 头车下部区域负压较大, 车底与裙板两侧存在强度较大的涡流, 易卷起轨道积雪形成雪烟; 除头车外, 车底与转向架表面绝大部分区域壁面剪切应力小于1 Pa, 对应的摩擦风速小于0.9 m·s-1, 沉积的雪粒不易被内部气流剪切走。   相似文献   

8.
用数值方法分析了涡产生器高度对带分流器的曲面矩形涡产生器式翅片传热与流动的影响,为使用这类换热器的设计提供了理论依据.研究表明,在翅片间距为2.4 mm涡产生器高度为1.4 mm,1.7 mm,2.0 mm和2.3 mm时,在同一雷诺数Re下,涡发生器高度1.7 mm时产生的二次流强度最大.随着雷诺数Re的增大,努塞尔数Nu也不断增大,阻力系数f减小.在同一雷诺数下,不同曲面矩形涡发生器高度时努塞尔数Nu相差不明显,阻力系数随着曲面矩形涡发生器高度的增大而增大.二次流强度Se与努塞尔数Nu存在唯一对应的关系,二次流强度Se越大,努塞尔数Nu也越大,传热效果更好.以强化因子为衡量标准优选,曲面矩形涡发生器高度1.7 mm获得最佳的综合性能.  相似文献   

9.
为了研究圆柱形密闭空间内近壁面火灾烟气的流动状态,运用大涡模拟和混合分数的方法对横剖面直径为3.2 m,纵向长6 m的圆柱形舱室内的模拟火灾实验进行了三维数值瞬态分析.研究结果表明,空气从单一方向进入火羽流,热烟气流动过程中受拱形壁面限制效果明显,横剖面非火源处的烟气层分层不甚明显,距火源中心2.35 m处,横向烟气传播的危害性比纵向大,同时表明数值模拟结果能较好的反应烟气流动的规律.  相似文献   

10.
为验证大涡模拟在风工程研究上的适用性,数值模拟了固定三维直圆柱在雷诺数(Re数)为4.11104下的绕流场,获得了圆柱非定常气动力,得到了与文献结果接近的升力脉动RMS值和漩涡脱落斯特劳哈尔数(Sr数);提出了基于90和270点脉动压力时程的互相关系数和RMS值,估算圆柱截面脉动升力RMS值的经验公式;开展了圆柱表面脉动压力时程的相干性分析和气动力产生的流动机理研究.研究揭示了圆柱涡脱的空间不同步和频率随时间的变化特征,以及涡脱能量的有限频率带宽分布;表明圆柱表面的脉动压力能量均集中在漩涡脱落频率上,且圆柱表面90和270点脉动压力时程具有完全相同的统计特性.   相似文献   

11.
分析了飞机遭遇尾涡后的响应机理,综合考虑飞机滚转阻尼特性及操纵品质等因素,建立了飞机滚转角加速度计算模型;因飞机遭遇尾涡后飞行轨迹及飞行姿态发生改变,选择了多个扰动参数评估尾涡遭遇安全性,建立了飞机动力学参数计算模型;为确定尾涡遭遇可接受安全水平,基于国内现行尾流间隔标准,统计了中低空典型机型组合的尾流遭遇受扰参数计算数据;分析了高空尾涡流场演化特性,计算了高空巡航状态下的尾流安全间隔,分析了不同因素对飞行安全的影响。研究结果表明:与中低空相比,高空尾涡流场的初始强度大,持续距离长,飞行高度超过9 000 m后,尾涡消散随高度的增大而加快;当前机为超级重型机、重型机,现行尾流间隔无法保证飞行安全,需增加安全间隔1.4~2.1 km,飞行高度分别超过13 800、14 400 m后,尾涡遭遇严重度降低;当前机为一般重型机时,尾流安全间隔可缩减1.5 km以提高空域利用效率;当前机为中型机时,尾涡遭遇安全性较高,但此时受最小雷达间隔限制,无法进一步缩减前后机间距;后机的飞行速度越低,发生尾涡遭遇的严重程度越高;在后机初始滚转坡度角由0增加到10°的过程中,尾涡安全间隔增加1.3 km,增加幅度约为8.61%。可见,采用多个受扰参数能有效评估高空尾涡遭遇严重程度。   相似文献   

12.
为了研究飞机的三角翼前缘涡破裂后,破裂涡流的非定常特性,在风洞中进行了75°后掠三角翼的动态测压实验.实验结果表明:三角翼翼面的压力脉动强度变化和翼面上前缘涡的流态是正相关的,在前缘涡破裂迎角区,上翼面的压力脉动强度最高达到33 Pa,抖振强度随迎角的变化趋势与上翼面的压力脉动随迎角的变化趋势相同.通过对压力信号的分析得出,三角翼翼面上的压力脉动主要是由破裂涡流中的螺旋波引起的,螺旋波产生了三角翼机翼抖振.   相似文献   

13.
编队飞行是实现民航绿色发展的重要措施之一。在前机尾涡危险区域分析的基础上,科学确定后机最优位置是编队飞行的关键。首先,以随机两阶段尾涡消散模型为基础,利用Hallock-Burnham涡模型和诱导滚转力矩系数模型分析后机诱导滚转力矩系数的演变规律。然后,基于设定的安全阈值,给出前机尾涡危险区域,并考虑飞行高度、速度和风对危险区域的影响。最后,基于后机不同位置处的燃油流量减少率,得出编队飞行中后机最优位置。研究结果表明:后机诱导滚转力矩系数随着前、后机之间横向距离的增加,呈先增后减再增的趋势;随纵向距离的增加,呈先缓慢减小后快速减小的趋势;高度越高、速度越小,诱导滚转力矩系数的峰值越高。飞行高度越高、速度越小,前机初始尾涡的危险区域越大;随着纵向距离的增加,危险区域不断减小,并随涡核的下沉不断下降。侧风使危险区域发生偏离,侧风越大,偏离程度越大。顺风会增加危险区域的纵向距离,顶风则与之相反。两架B737-800飞机在12000 m高度以0.78马赫数进行编队飞行时,前、后机纵向距离3000m处,无风情况下后机最优位置为横向距离30 m 或-30 m、垂直距离29 m,此时燃油流量减少率为7.01%。相较于无风,左侧风20 m·s -1 下,燃油流量减少率和垂直距离不变,横向距离增加;顺风20 m·s -1 下,燃油流量减少率增加,横向距离不变,垂直距离减少;顶风20 m·s -1 下,燃油流量减少率减小,横向距离不变,垂直距离增加。  相似文献   

14.
桥梁墩柱三维绕流特性精细化研究   总被引:6,自引:2,他引:4  
为了深入研究桥梁墩柱水流力的特点及产生机理,对典型桥墩模型考虑自由液面影响时的三维绕流展开了精细化研究. 采用ANSYS FLUENT 作为数值模拟工具,研究了整个墩柱阻力和升力特点,并将墩柱模型从柱底到柱顶划分为5个分段,对比了各个分段阻力、升力特点及沿着水深的变化规律,进一步分析了自由液面、底部边界对漩涡结构的影响,阐述了流场三维特性与墩柱水流力之间的关系. 研究结果表明:墩柱水流力沿着水深是非一致分布的,墩柱分为5段(c1~c5),其中c1~c4分段阻力均值与圆柱整体受力的比值分别约为25%、30%、25%、20%,c5分段处于空气中受力贡献近似为0;另外阻力振幅、升力振幅中下部较大,而底部、中上部、液面处较小;漩涡交替脱落导致墩柱左右两侧自由液面交替起伏,自由液面对漩涡产生抑制作用,自由液面处产生多个尺度不同的漩涡,这与液面下仅有两个交替脱落的漩涡是不同的;墩柱中下部漩涡脱落比其余位置有所滞后,导致柱体不同分段处升力有明显的相位差;墩柱升力振幅与阻力均值分别为5.511 N和3.695 N,相差不大,升力引起的桥墩或桥梁的振动不可忽视.   相似文献   

15.
为探求某机车用轴流式风机的系统性能,对不同工况下带有前后导叶的该风机内部流场进行了数值仿真.模拟结果表明,在叶片转速不变情况下,随着气体流量的增加,叶片的气动压力增加,功率增大,风机的效率也随之提高;在气体流量保持不变时,随着叶片转速的增加,叶片的气动压力增加,功率增大;当风机出口存在阻力时,则叶片的气动压力增加,功率也增大.研究还表明,叶片两侧的最大气压差可达10 500 Pa以上,高速旋转时对叶片有一定危害.计算结果与试验测试结果的对比表明,二者吻合较好.  相似文献   

16.
针对当今中国高速公路货运主导车型6轴铰接列车以满载状态在相同纵坡条件下行驶时, 其性能差于《公路工程技术标准》 (JTG B01—2014) 中纵坡设计代表车型的问题, 采用典型平路试验和实际道路试验相结合的方法, 获得了该主导车型的发动机使用外特性曲线, 分析了试验车发动机转矩、功率与发动机转速的关系; 依据汽车行驶受力方程, 建立了该主导车型在各个挡位下的坡度与车速的关系曲线, 确定了不同纵坡坡度时, 发动机全负荷状态下车辆稳定行驶的最大平衡速度, 获得了该主导车型的加速性能曲线和减速性能曲线, 提出了符合中国当前货运车型变化的高速公路上坡方向纵坡坡度、坡长等主要控制指标。研究结果表明: 相比于《公路工程技术标准》 (JTG B01—2014), 在相同纵坡条件下, 由于主导车型比功率的降低, 其平衡速度较标准中纵坡设计代表车型对应的平衡速度降低了20%~30%, 且适应其动力性的最大纵坡坡度比标准中规定的纵坡坡度小50%, 因此, 中国当前主导货运车辆动力性能不适应高速公路纵坡条件; 根据6轴铰接列车在不同纵坡上的加减速特性, 满足6轴铰接列车爬坡需求的最大纵坡坡长随坡度的增大而降低, 且降低幅度逐渐增大, 最大降幅达到60%。   相似文献   

17.
为了探讨尾部隔板对圆柱绕流场的影响,采用有限体积法、非结构化网格和层流模型求解二维不可压缩N-S方程.在雷诺数为200的条件下,对背流面沿流动方向的对称线上,带薄板的圆柱绕流场进行了数值模拟,得到了流场速度云图、斯特劳哈尔数及平均阻力系数随隔板长度的变化情况.研究结果表明:在圆柱尾部加入的隔板能有效改善旋涡的脱落情况,削弱尾迹区的能量耗散,同时降低绕流的斯特劳哈尔数.在板长与圆柱直径比为L/D≥7的情况下,加入的隔板使圆柱尾部的旋涡被拉伸为扁平结构并限定在隔板两侧,在扁平对涡的外侧形成类似流线型的流场结构;尾部的隔板也使绕流的阻力系数呈现下降的趋势,当L/D=7时,平均阻力系数下降了约40%.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号