首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
选择几种不同生料进行配方,烧制不同含量硅酸二钙水泥熟料,在煅烧过程中通过阴离子掺杂来研究对熟料易烧性能的影响,并添加稳定剂B2O3使贝利特保持活性较高的晶型;运用XRD、岩相分析、SEM等测试手段,初步探讨了离子掺杂对高强低钙硅酸盐水泥熟料煅烧和水化性能的影响。主要结论是,最佳的煅烧温度为1 350℃,稳定剂的加入可以促进熟料中的稳定存在;其次,当煅烧温度在1 400~1 450℃,w(C2S)含量在45%、w(C3S)含量30%时,熟料矿物结晶完整,矿物形貌最好,其早龄期的水化产物量也最多。  相似文献   

2.
通过研究水泥修补材料来实现水泥路面的快凝快硬,达到及早开放交通和节省时间的目的.研究主要通过两种不同特种水泥与普通硅酸盐水泥进行混合配比,通过实验研究砂浆配合比、水泥凝结时间、及砂浆的粘结强度,来解决道路修补中承载力及路面新旧接口处粘结问题.通过研究发现高铝水泥的最佳掺量范围在22%,硫铝酸盐水泥的最佳掺量范围在17%,早期强度最高可达到20MPa以上.掺入高铝水泥后水泥终凝时间为40min,硫铝酸盐水泥终凝时间为80min,这些结果均满足早期快速修补路面的要求.  相似文献   

3.
采用Hummers法和超声波分散法制备氧化石墨烯(GO),并通过透射电镜、红外光谱、X射线光电子能谱等微观手段对其结构进行了表征。研究了单掺GO、同时掺加GO和聚羧酸减水剂(PC)对水泥砂浆抗折抗压强度的影响规律。结果表明:在PC存在下,GO在水泥-水体系中有较好的分散能力;复掺GO与PC后,水泥砂浆3 d和28 d抗折抗压强度比单掺GO或者单掺PC的试件的强度提高了20%以上,且早期强度提升显著。经扫面电镜(SEM)及水泥净浆孔径分析研究表明,GO能参与水泥水化过程以及对水泥水化晶体生长有模板调节作用,GO改性的水泥砂浆的C-S-H晶体可以致密整齐规整生长在GO片层上,试件内部结构更加密实,从而使GO改性水泥砂浆呈现出优异的力学性能。  相似文献   

4.
文章通过硫酸钠和石灰石复掺的方法对磷渣水泥进行改性研究。研究表明:磷渣掺量大于40%时,磷渣水泥初凝时间达到8h以上,强度降低明显。磷渣在比表面为510m2/kg时,初凝时间最长,后期强度最高。复掺硫酸钠和石灰石能有效降低磷渣水泥凝结时间,在硫酸钠掺量为3%,石灰石掺量为5%时,水泥的3d强度达到15.23MPa,28d强度达到38.44MPa,而水泥的初凝和终凝时间分别缩短了136min和153min。  相似文献   

5.
将纳米氮化硅粉体按不同比例掺入到水泥中,对其进行改性的研究。探讨其对水泥综合物理力学性能及耐腐蚀性的影响,采用SEM对改性水泥的水化产物形貌进行测试,并对改性机理进行了初步研究。试验结果表明:纳米Si3N4粉体对水泥净浆和胶砂的28d改性最佳掺量均为6%。此时,水化1d、3d、7d和28d的净浆,其抗压强度分别较空白样提高了75.0%,40%,49.0%和22.9%;胶砂的抗压强度分别较空白样提高了68.6%,104.6%,99.4%,33.0%,抗折强度分别提高了42.9%,86.1%,22.1%,3.8%。纳米Si3N4粉体的掺入提高了水泥的耐腐蚀性能。  相似文献   

6.
从改善混凝土性能以及研究绿色环保材料的角度出发,将废旧ABS/PC塑料颗粒作为一种添加成分,采用体积替代细骨料的方法对水泥混凝土进行改性研究。以C30普通混凝土为基础,研究了水泥混凝土在不同废旧塑料颗粒掺量下的立方体抗压强度、劈裂强度、抗折强度等力学指标的变化规律。研究结果表明:废旧塑料颗粒的掺加能较好地改善水泥混凝土的力学性能,在四种掺量(2%、5%、8%、11%)下,当掺量为5%时,水泥混凝土的立方体抗压强度、劈裂强度和抗弯拉强度均达到最大值。  相似文献   

7.
研究了碳纳米管对硅酸盐水泥耐腐蚀性的影响,采用SEM和能谱对碳纳米管水泥的水化产物形貌进行测试,并对改性机理进行了初步研究.试验结果表明:碳纳米管的掺入可以改善水泥净浆的抗酸性硫酸盐及盐酸侵蚀,当碳纳米管的掺量为0.1%时,水泥净浆试件的抗腐蚀性最佳.在最佳掺量下,水泥净浆试件在浓度分别为5%的Na2SO4和HC1溶液中浸泡28 d的抗压强度较未掺杂碳纳米管试件分别提高了46.3%和56.8%,抗拉强度分别提高了60.3%和11.5%.初步分析碳纳米管的掺入可改善硅酸盐水泥耐腐蚀性的机理在于填充作用和桥联增强效应.  相似文献   

8.
为了提高水泥混凝土的使用性能,通过室内试验研究了丁苯改性水泥混凝土(PCC)的力学性能、收缩性能和耐久性。研究结果表明:随着丁苯掺量的增加,PCC在抗折强度提高的同时刚度降低,早期收缩性能有所改善,抗渗、耐磨、抗腐蚀等耐久性均有显著提高。  相似文献   

9.
将废弃陶瓷材料加工成陶瓷粉,通过对陶瓷粉-水泥复合胶凝材料硬化浆体形貌观察,化学结合水含量和孔溶液碱度的测定,进行了早期高温养护对陶瓷粉-水泥复合胶凝材料水化特性影响的研究。研究结果表明:相同养护条件下,水泥硬化浆体的化学结合水含量和孔溶液碱度随陶瓷粉掺量的增大而减小;当陶瓷粉掺量低于20%时,早期高温养护对孔溶液碱度的提高有促进作用,且对整体水化程度的影响较大;早期高温养护提高了陶瓷粉-水泥复合胶凝材料的早期水化速率,使得早期硬化浆体的微观结构更加致密,但是对后期硬化浆体水化程度的提高有抑制作用。研究成果为陶瓷粉-水泥复合胶凝材料在早期高温养护条件下水化特性的进一步研究提供了试验基础。  相似文献   

10.
粉煤灰是煤粉在电厂炉内燃烧后的产物,属于一种人工火山灰材料。其特性是本身加水后不会产生强度,但在一定的细度状态下.经石灰(或水泥)的激发作用.可生成和水泥熟料相似的水化产物,具有胶结性,从而产生强度。  相似文献   

11.
研究不同聚灰比条件下SBR改性乳化沥青对水泥砂浆工作性能和力学性能的影响,试验结果表明在水泥砂浆中加入适量的SBR改性乳化沥青,能够使其工作性能和力学性能得到明显改善,脆性降低、柔性增大,当聚灰比在10%~15%时改性效果较好。  相似文献   

12.
再生水泥混凝土疲劳性能   总被引:7,自引:0,他引:7  
利用水泥混凝土路面养护维修时产生的废料生产再生产水泥混凝土,不仅降低建成成本,而且能减少环境污染,通过对再生水泥混凝土的疲劳性能试验研究,结果表明再生水泥混凝土的疲劳规律与普通水泥混凝土相似,而且在高应力水平状态下,再生水泥混凝土的疲劳寿命较高,使用再生水泥混凝土修建的水泥混凝土路面,完全能够满足混凝土面板的力学性能要求。  相似文献   

13.
通过在普通水泥砼路面中添加聚合物对它进行改性处理,可以提高其路用性能,但同时将增加初期建设费.本文从路面的寿命周期费用的角度,分析聚合物改性水泥砼路面的运用经济性及运用前景.  相似文献   

14.
进行了高掺量磨细粉煤灰水泥基材料的抗硫酸盐侵蚀性能试验。结果表明,与普通硅酸盐水泥相比,掺有50%原状粉煤灰的水泥在3%硫酸钠溶液中28d的抗蚀系数由0.94提高至1.00。180d时,掺有50%和70%磨细灰的水泥在3%硫酸钠溶液的抗蚀系数均高于掺有相同数量原状灰的水泥。由于细磨工艺优化了粉煤灰的颗粒度分布和颗粒级配,改善了颗粒的表面形貌,通过与水泥水化释放出的Ca(OH)2进行火山灰反应形成新的C-S-H凝胶,使水泥浆体孔结构细化,微观结构致密,粉煤灰颗粒与水泥浆体的界面结合牢固,从而提高了水泥基材料的耐蚀性能。  相似文献   

15.
通过试验对不同掺量的水泥对盐渍土的黏聚力、内摩擦角、无侧限抗压强度的影响进行分析,结果表明:掺加水泥能显著改善盐渍土的力学性能,并且随着水泥掺量的增加,盐渍土的力学性能也逐步提高.  相似文献   

16.
纳米SiO2是一种新兴的材料,用途非常广泛。水泥混凝土路面存在刚性过大、抗弯拉强度不足的问题。通过在普通水泥混凝土中掺加不同量的SiO2纳米材料,测试纳米水泥混凝土的抗压强度和抗弯拉强度。研究表明:纳米SiO2的掺加能改善水泥混凝土的抗压强度和抗弯拉性能,纳米水泥混凝土抗弯拉强度的改善优于抗压强度。  相似文献   

17.
为研究聚羧酸减水剂与水泥相容性的影响因素,采用净浆流动度法测试不同新鲜度、不同温度、不同湿度的水泥与聚羧酸减水剂的相容性,采用Zeta电位仪测试表面电荷、激光粒度仪测试平均粒径、X射线衍射仪测试物相成分.研究结果表明:新鲜度较低、温度较低、湿度较高将导致水泥与聚羧酸减水剂饱和掺量点更低、流动度更高,即相容性更好;新鲜度较高的水泥相对于新鲜度低的水泥Zeta电位高出1.86 mV,平均粒径高出2.63 μm,且对聚羧酸减水剂吸附较多的C3A、C4AF含量较高.可初步推断,导致相容性出现差异的因素主要包括水泥温度、湿度、水泥组分、Zeta电位.   相似文献   

18.
半柔性路面是一种在大孔隙沥青混合料中填充水泥胶浆而形成的兼具沥青路面与水泥砼路面特点的复合路面.笔者采用浸水马歇尔试验和冻融劈裂试验评价半柔性路面混合料的水稳定性,用低温劈裂试验评价半柔性路面混合料的低温抗裂性能.试验结果表明,半柔性路面混合料具有优良的水稳定性、低温抗裂性能.  相似文献   

19.
半柔性路面是一种在大孔隙沥青混合料中填充水泥胶浆而形成的兼具沥青路面与水泥砼路面特点的复合路面.笔者采用浸水马歇尔试验和冻融劈裂试验评价半柔性路面混合料的水稳定性,用低温劈裂试验评价半柔性路面混合料的低温抗裂性能.试验结果表明,半柔性路面混合料具有优良的水稳定性、低温抗裂性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号