首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
在MATLAB/SIMULINK中建立了七自由度车辆主动悬架模型,以提高车辆行驶平顺性为控制目标,主动悬架作动器的输出力为控制对象,根据最优控制原理设计出了基于轴距预瞄信息的主动悬架控制策略.仿真结果表明,与无预瞄系统的控制策略相比,基于预瞄信息的最优控制策略能够有效地降低车身垂直振动加速度、车身侧倾角加速度和俯仰角加速度,车辆行驶平顺性明显提高.  相似文献   

2.
建立了基于空气悬架的1/2车辆加速/制动系统模型,通过轴距预瞄在后轮处提前预测路面不平度;设计了基于轴距预瞄控制算法的加速/制动最优控制器;进行了白噪声仿真分析。仿真结果表明:与被动空气悬架加速/制动系统相比,基于轴距预瞄控制的主动空气悬架加速/制动系统能有效降低车辆振动。与最优控制空气悬架加速/制动系统相比,质心加速度和后轮对应处的车身加速度、悬架动行程、轮胎动载均有显著减小,较好的改善了车辆在加速/制动时的平顺性和操纵稳定性。  相似文献   

3.
基于键合图理论的主动悬架LQG控制   总被引:5,自引:2,他引:5  
基于键合图理论建立了四自由度1/2车辆主动悬架的振动模型并推导出状态方程,以车身垂直振动、纵向角振动及控制总能量最小为目标函数,采用随机线性二次型高斯(LQG)控制,得到了主动悬架的最优控制增益和Kalman滤波增益.进行对照仿真,结果表明采用LOG控制策略的主动悬架可以有效改善行驶车辆的平顺性.  相似文献   

4.
基于车辆动力系统模型,设计了针对车辆平顺性的4自由度车辆主动悬架系统半车模型。针对提高车辆平顺性设计了模糊控制规则库,并将模糊控制逻辑结合到PID控制当中,设计了主动悬架系统的模糊PID控制器。通过MATLAB/Simulink仿真分析了基于模糊PID控制器的主动悬架与被动悬架的性能。仿真结果表明:设计的模糊PID控制器,能显著降低车身加速度和俯仰角,提高主动悬架的平顺性。  相似文献   

5.
在建立二自由度主动悬架和电液伺服作动器集成模型基础上,应用预测控制理论,采用多步预测、滚动优化和在线校正等控制策略进行预测控制器的设计.对B级路面激励输入下,车辆分别处于空载和满载两种工况进行模拟仿真.仿真结果表明:具有预测控制策略的电液主动悬架系统对由路面输入引起的振动能有效抑制,车身垂直加速度、悬架动挠度和轮胎动载荷与被动悬架、PID控制的主动悬架相比明显降低,车辆的行驶平顺性得到很大改善,预测控制器在参数变化及路面扰动下具有较强的鲁棒性.  相似文献   

6.
为改善汽车的平顺性,提出一种半主动悬架的自适应模糊PID算法;选用二自由度1/4车半主动全尺寸悬架为研究对象,用Adams软件建立半主动悬架全尺寸模型,对模型自适应模糊PID控制器进行设计,利用联合仿真分析技术,对建立的机械模型和控制算法进行分析并与被动悬架及模糊控制方式进行了对比。研究表明:采用自适应糊PID控制策略的主动悬架相对采用模糊控制的主动悬架以及被动悬架,车身加速度峰值分别降低了5.0%和2.9%,悬架动行程分别降低了3.2%和1.68%,轮胎动位移分别降低了0.29%和0.25%。采用自适应模糊PID算法的半主动悬架,在改善汽车的行驶平顺性方面有良好的效果,为研究车辆平顺性研究提供一种有效方法。  相似文献   

7.
为了研究控制策略与作动器对车辆主动悬架稳定性的耦合作用效果,设计了一款能够传递力与位移的电动作动器,其作用是经齿轮机构将直流无刷电机的输出减速后通过滚珠丝杠转化为低速直线运动.建立了该电动作动器作动系统的AMESim模型与电动主动悬架的物理模型,仿真分析了电动作动器作动系统的跟随性及误差值.设计了LQR控制器,以正弦信号输入,考虑主动悬架控制策略与电动作动器的耦合关系,借助Matlab/Simulink与AMESim联合仿真,分析了电动主动悬架的动态特性.结果表明,所设计的LQR控制器对基于电动作动器的车辆悬架系统有较好的控制效果,可有效改善车辆的行驶平顺性与操作稳定性.  相似文献   

8.
为进一步改善横向互联空气悬架车辆的行驶平顺性和操纵稳定性, 基于多智能体理论和合作博弈Shapley值原理构建多智能体减振器控制系统; 多智能体减振器控制系统由信息发布智能体、平顺性智能体、操稳性智能体和博弈协调智能体组成, 其中信息发布智能体从环境中获取车辆状态信息, 根据下层智能体的信息需求传递信息, 平顺性智能体接收悬架动行程及其变化率信息, 根据平顺性控制要求, 输出自身的阻尼系数意图, 操稳性智能体接收当前互联状态信息触发对应的推理模块, 根据车身侧倾角信息求解需求的阻尼系数, 其中推理模块是通过对遗传算法优化出的阻尼系数进行模糊神经网络自学习形成的, 博弈协调智能体接收平顺性智能体与操稳性智能体的阻尼意图, 根据自身的合作博弈规则, 对阻尼意图进行修正, 输出全局最优阻尼系数; 在不同互联状态、不同激励条件下进行空气悬架静、动态特性试验研究, 并将试验结果与仿真结果进行对比, 验证仿真模型的准确性; 在混合工况下, 利用整车仿真模型验证多智能体减振器控制系统的可行性和有效性。研究结果表明: 和传统减振器阻尼控制系统相比, 多智能体减振器控制系统能有效地使簧载质量加速度均方根值降低14.95%, 悬架动行程均方根值降低10.64%, 车身侧倾角均方根值降低12.33%。提出的多智能体减振器控制系统改善了车辆行驶平顺性和乘坐舒适性, 并且能够抑制车身的侧倾, 提高整车的操纵稳定性。   相似文献   

9.
建立了包含扭转梁式悬架系统的整车8自由度平顺性模型和车辆瞬态侧倾模型,运用MATLAB/Simu-link仿真分析了扭转梁式悬架系统对平顺性和车辆瞬态侧倾的影响,并进行平顺性随机输入行驶试验和稳态回转试验验证。研究表明:在积分白噪声仿真路面,扭转梁式悬架系统对垂向和纵向振动几乎没有影响,但对侧倾振动动态性能具有重要影响,如固有频率、峰值时间、最大超调量等;揭示了扭转梁式悬架的扭转刚度、纵臂长度与车身侧倾角、车身侧倾固有频率、瞬态侧倾特性等之间的关系,为平顺性和操稳性协同优化设计奠定了基础。  相似文献   

10.
基于AMESim软件建立1/4空气悬架系统模型,利用Matlab软件设计空气悬架系统控制器,使用Matlab和AMESim对空气悬架系统进行联合仿真。白噪声路面信号输入下的联合仿真结果分析表明,安装主动空气悬架系统车辆的最大振动加速度与振动加速度均方根、平均车身高度、动载荷均比安装被动空气悬架系统的车辆小,该仿真结果符合有关主动空气悬架系统的一般研究结论,该控制方法可以有效提高车辆的平顺性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号