首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
桥上无缝线路由于梁、轨的相互作用,钢轨会受到附加纵向力的作用,尤其在特大型长联连续梁桥上钢轨受到的纵向附加力更是不容忽视。本文建立了以轨道、桥梁、支座、墩台、基础为整体结构的纵向附加力计算空间有限元模型,计算了某特大型长联连续梁桥上钢轨的温度力。分析了:小阻力扣件铺设位置、铺设长度对钢轨伸缩附加力的影响;钢轨伸缩调节器铺设位置对钢轨温度力的影响。综合分析结果提出了该特大型长联连续梁桥上无缝线路的铺设方案。  相似文献   

2.
为获得大跨高墩长联桥上无缝线路设计的控制因素,探讨了大跨高墩长联桥墩台线刚度的合理取值.基于桥上无缝线路力的传递机理,建立了钢轨-主梁-桥墩-基础一体化力学模型;利用APDL参数化语言对ANSYS进行二次开发,建立了参数化优化模型,编制了桥墩线刚度优化程序.结合实际工程,分析了跨度64 m的有碴轨道简支梁桥墩顶纵向水平线刚度的限值.分析结果表明:梁轨快速相对位移及钢轨附加应力控制大跨高墩长联桥上无缝线路的整体设计, 该跨度为64 m的有碴轨道简支梁桥墩顶纵向水平线刚度的限值应超过750 kN/cm.   相似文献   

3.
针对中国自主研发的CRTSⅢ型板式无砟轨道在运营阶段的受力变形问题, 以梁-板-轨相互作用原理为基础, 考虑钢轨、轨道板、自密实混凝土层及底座板等细部结构的空间尺寸与力学属性, 运用有限元法建立了高速铁路桥上CRTSⅢ型板式无砟轨道无缝线路精细化空间耦合模型; 计算了列车荷载作用下轨道及桥梁结构的挠曲力与位移, 分析了不同列车荷载作用长度、桥上扣件纵向阻力及墩台顶固定支座纵向刚度对挠曲力与位移的影响。研究结果表明: 在全桥加载情况下, 多跨简支梁桥上钢轨挠曲力在支座处表现为拉力, 跨中表现为压力, 大跨连续梁主桥上钢轨挠曲力在两侧边跨表现为拉力, 中间跨表现为压力, 单线加载时2种桥上有载侧钢轨挠曲力分别达到了38、53 kN, 约为双线加载时的1/2;轨道、桥梁结构纵向力与位移最大值不同时出现在同一工况下, 需要根据不同的检算部件选取最不利的列车荷载作用长度, 并将ZK活载中的集中力设置在跨中位置; 采用小阻力扣件可以改善钢轨受力与变形, 简支梁桥和连续梁桥上钢轨最大挠曲力分别减小了35%和22%, 钢轨纵向位移分别减小了7%和5%, 但轨板相对位移分别增大了26%和30%, 需加强观测以控制钢轨的爬行; 从轨道及桥梁结构的安全性与耐久性角度考虑, 建议将墩台顶纵向刚度控制在设计值的1.0~1.5倍范围内。   相似文献   

4.
连续梁桥上无缝道岔伸缩力与位移计算   总被引:8,自引:0,他引:8  
将钢轨和梁体视为杆单元,轨枕视为梁单元,扣件阻力、道床阻力和桥墩刚度视为弹簧单元,建立了计算连续梁桥上无缝道岔伸缩力与位移的有限元力学模型,根据变分原理和“对号入座”法则建立了模型求解的非线性方程组,分析了道岔设计参数对桥上无缝道岔伸缩力和位移的影响。研究结果表明:伸缩调节器布置在道岔的后端,连续梁固定墩的纵向力可降低43.2%;增加连续梁固定墩纵向刚度有利于减小钢轨位移;连续梁固定支座的位置对系统的受力与变形有双重影响,实际设计时应综合考虑。  相似文献   

5.
用广义变分法来计算桥上无缝线路附加力,提出了研究桥上无缝线路附加力计算的新方法。基于已有的试验及计算结果,先假设钢轨伸缩附加力函数,由此得到钢轨位移及梁轨相对位移函数,再通过对梁轨体系总能量进行广义变分计算,建立起结构体系的平衡方程,最后编制相应的计算程序,得到了符合工程实际的计算结果。  相似文献   

6.
针对桥墩温度梯度引起的桥上CRTSⅡ型板式无砟轨道纵向附加力与变形, 以梁-板-轨相互作用原理和有限元法为基础, 建立了多跨简支梁桥和大跨连续梁桥上CRTSⅡ型板式无砟轨道无缝线路空间耦合模型, 详细考虑了钢轨、轨道板、CA砂浆、底座板及桥梁等主要结构和细部结构的空间尺寸与力学属性; 采用单位荷载法计算了桥墩纵向温差作用引起的墩顶纵向位移, 分析了墩顶位移影响下桥上无砟轨道无缝线路纵向力与位移的分布规律。分析结果表明: 当各墩顶发生均匀位移时, 多跨简支梁桥和大跨连续梁桥上无砟轨道无缝线路纵向力分布规律及其最大值一致, 且随着墩顶均匀位移的增加而线性增大, 轨板相对位移峰值均出现在两侧桥台、台后锚固结构末端以及第2跨和最后一跨固定支座墩顶处; 当墩顶均匀位移为5 mm时, 多跨简支梁桥和大跨连续梁桥上钢轨最大纵向力分别为79.62和79.54 kN, 最大纵向位移分别为4.94和4.91 mm, 轨板最大相对位移均为0.23 mm; 当各墩顶发生不均匀位移时, 钢轨纵向力及轨板相对位移均在邻墩位移存在差异处发生突变, 多跨简支梁桥上固结机构纵向受力大于大跨连续梁桥; 对于高墩桥梁, 需重点关注相邻墩身高差最大处的轨板相对位移、底座板与桥梁相对位移及固结机构的纵向受力。   相似文献   

7.
为深入探索有砟道床阻力演变对桥上无缝线路力学行为的影响,针对路基地段与桥上道床纵、横向阻力开展试验研究.以一座铁路常用双线特大连续梁桥为例,获得了桥上线路阻力分布特征,并提出实际道床在服役过程中存在局部阻力退化现象.在此基础上,建立了可考虑道床阻力非均匀分布与退化效应的桥上无缝线路纵向力学行为分析模型,开展了道床阻力分布及退化对大跨桥上无缝线路力学行为的影响分析.研究结果表明:桥上道床纵向阻力区域分布差异显著,桥跨中部纵向阻力值最大,阻力值为31.8 k N/枕,梁缝附近道床纵向阻力相对较小,阻力值为21.7 k N/枕,阻力退化效应明显;桥上道床横向阻力分布同样表现出一定区域分布特征,但退化效应并不明显,桥跨中部与梁缝处阻力值分别为31.7、25.5 k N/枕;由于受到温度荷载作用下梁体伸缩、列车动荷载作用下桥梁产生振动变位和梁端转角的影响,散体道床始终处于拉伸压缩的动态变化过程中,道床阻力表现出明显的退化特性;考虑道床阻力退化效应时,温度荷载作用下的钢轨伸缩附加力、钢轨位移、梁轨相对位移值有一定衰减,当桥梁温度跨度为140 m时,钢轨纵向附加力最大值减小约11.7%,且衰减率随着温度跨度的增加近似呈线性增长,按现有规范计算方法得到的梁轨相互作用结果偏大.  相似文献   

8.
轨道参数对无缝道岔组合效应的影响   总被引:3,自引:0,他引:3  
基于有限单元法,建立了组合无缝道岔钢轨纵向力及位移的力学计算模型,编制了计算软件,并以12号固定辙叉无缝道岔为例,分析了不同轨道参数对组合无缝道岔钢轨附加力及位移的影响,并与其对单组无缝道岔的影响作了对比分析。研究表明,道床纵向阻力对组合无缝道岔钢轨附加力及位移的影响要明显大于单组无缝道岔,扣件阻力和限位器间隔对组合道岔和单组道岔的影响差不多,扣件阻力对组合道岔的影响略大于单组道岔,而限位器间隔对组合道岔的影响略小于单组道岔,相比单组无缝道岔,保持组合道岔道床质量显得更为重要。  相似文献   

9.
为研究横向和竖向温度梯度对桥上CRTSⅡ型板式无砟轨道纵向力学特性的影响,以梁-板-轨相互作用原理为基础,建立大跨度连续梁桥上 CRTSⅡ型板式无砟轨道无缝线路空间精细化有限元模型,计算了轨道板竖向温度梯度和阴阳面横向温度梯度荷载作用下各轨道和桥梁结构的纵向力和位移. 结果表明:在其他温度荷载相同的情况下,轨道板竖向温度梯度对钢轨的纵向力和位移影响不大;当阴阳面横向温度差为10 ℃时,连续梁上背阴侧钢轨最大的纵向力是向阳侧的1.4倍,背阴侧桥墩最大的纵向力是向阳侧的3.5倍;在横向温度梯度作用下,钢轨纵向附加力由梁体伸缩和扭曲变形共同作用产生,横向温度梯度越大,背阴侧钢轨纵向力、位移最大值越大,向阳侧钢轨纵向力、位移最大值越小;横向和竖向温度梯度的存在不利于轨道和桥梁结构安全使用,因此,在高温差地区设计东西走向的大跨度桥上无缝线路需重点关注钢轨、轨道板和桥梁墩顶受力,并且对无缝线路的横向稳定性进行验算.   相似文献   

10.
高速铁路长大桥梁无缝线路附加挠曲力计算分析   总被引:3,自引:0,他引:3  
根据高速铁路长大桥梁无砟轨道无缝线路梁轨相互作用原理,结合京沪高铁实际情况,建立了京沪高铁整桥双线有限元模型,以10跨32 m混凝土简支箱梁桥为例,用有限元法计算分析了高速铁路长大桥梁无砟轨道无缝线路附加挠曲力及附加挠曲位移的分布。计算结果表明,列车在双线简支箱梁上单线运行时,其附加挠曲力值较小,4根钢轨的附加挠曲力值有所差别,但差别不大。钢轨附加挠曲力在桥台处较大,钢轨纵向位移则在桥梁中部较大,在桥台处较小。  相似文献   

11.
本文用有限元方法研究了一个分析提速铁路无缝线路稳定性的模型。该模型将钢轨、轨枕、扣件及道床阻力视为一个整体,并考虑了由于温度应力产生的非线性变形.在此基础上,推导出了计算公式,并编写了相应的程序。该模型还考虑了道床的横向阻力、失效轨枕、弯轨半径以及初始弯曲变形对无缝线路的影响。  相似文献   

12.
高速铁路桥上无缝线路力学计算模型对比   总被引:1,自引:0,他引:1  
高速铁路桥梁、墩台及荷载均具有很强的空间力学特性,平面力学模型不能很好反映上述工况,有着较大的局限性。在吸收前人研究成果的基础上,建立了梁、轨纵向相互作用三维有限元空间力学计算模型,以秦沈客运专线32m多跨简支双线整孔箱形梁桥为例,对其进行了纵向力分析,并与传统平面力学模型进行了比较。对于伸缩附加力,平面模型与空间模型计算结果相差不大;对于挠曲附加力,平面模型与空间模型计算结果有较大的差别;当双线对称加载时,平面模型与空间模型制动附加力计算结果相差不大;在单线制动或双线对向制动时,平面模型的计算结果较多超过空间力学模型的计算结果,其计算结果是偏于保守的。对比分析表明空间力学模型更适宜于各种工况附加力的计算。  相似文献   

13.
基于广义变分原理的铁路无缝道岔计算理论   总被引:3,自引:0,他引:3  
在继承现有试验成果的基础上,将广义变分原理应用于铁路无缝道岔结构体系的分析,提出了一种新的铁路无缝道岔计算理论,建立了较为完善的计算模型,在假设钢轨纵向位移函数的基础上,计算了无缝道岔结构体系各部分的能量,通过广义变分法建立了结构体系的平衡方程,编制了计算程序,分析了固定辙叉无缝道岔钢轨温度力与位移。  相似文献   

14.
为分析关键因素对桥上嵌入式轨道无缝线路力学特性的影响, 并基于可靠性理论对其进行评估, 采用有限元法建立了简支梁桥上嵌入式轨道无缝线路计算模型, 选择高分子材料纵向阻力和梁体温差为随机变量, 并根据实际工况确定了随机变量的分布类型和分布参数; 通过中心组合试验设计方法设计了响应面试验, 采用最小二乘法拟合了随机变量和响应之间的函数关系, 从而建立了轨板相对位移关于高分子材料纵向阻力和梁体温差的二次多项式响应面模型, 通过方差分析验证了所建立模型的正确性, 并采用灵敏度分析方法对随机变量进行了参数敏感性分析; 构建了桥上嵌入式轨道无缝线路长期服役性能的极限状态方程, 综合运用蒙特卡洛法和响应面模型评估了简支梁桥上嵌入式轨道无缝线路的可靠性。分析结果表明: 梁体温差和高分子材料纵向阻力对轨板相位移的灵敏度系数分别为0.99和-0.08, 梁体温差对轨板相对位移的影响远大于高分子材料纵向阻力; 在考虑参数的随机性以后, 温度作用下的轨板相对位移具有一定的离散性, 其主要分布在4.0~6.5 mm范围内, 且近似服从正态分布; 在不采取特殊处理措施的情况下, 不宜在年温差较大的地区建造桥上嵌入式轨道; 提出的桥上嵌入式轨道无缝线路可靠性评估方法可为嵌入式轨道结构的设计提供理论指导。   相似文献   

15.
高速铁路桥上无缝线路断轨力计算模型   总被引:1,自引:1,他引:1  
在吸收前人研究成果的基础上,采用实体单元模拟桥梁及桥梁墩台,采用空间梁单元模拟钢轨及轨枕,采用弹簧单元模拟钢轨、轨枕、桥梁与墩台之间的连接,建立了断轨三维有限元空间力学模型。以秦沈客运专线10跨32 m简支双线整孔箱形梁桥为例,对其进行断缝值影响因素分析。研究结果表明:对于多跨简支梁桥,断缝与梁温度变化幅度、断缝位置、支座摩擦阻力关系不大;断缝值与扣件纵向阻力、钢轨温度变化幅度、桥墩纵向刚度、钢轨类型关系比较密切;断缝值及采用的力学计算模型也有一定的关系,相比传统计算模型,空间力学模型计算结果偏小。  相似文献   

16.
无缝提速道岔钢轨温度力与位移的计算   总被引:11,自引:0,他引:11  
无缝道岔是发展超长无缝线路的关键,而道岔区导轨、基本轨纵向力分布和位移的计算则是无缝道岔设计的先决条件。建立了提速道岔钢轨温度力与变形分析的力学模型,编制了实用计算程序,并进行了计算分析,给出了钢轨温度力变形随其相关因素的变化规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号