首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于对常温下预应力型钢混凝土梁承载性能的研究,利用截面有限单元法建立了预应力型钢混凝土梁在火灾高温作用下的正截面抗弯承载力简化计算公式.并针对试验梁进行了计算分析,得到了基于标准升温情况下的正截面抗弯承载能力与升温时间的全过程关系曲线,揭示了预应力型钢混凝土梁随着升温时间的增加,其正截面抗弯承载力显著降低的劣化规律.将试验梁抗弯承载力的计算结果与试验实测结果进行了对比分析,相对误差为9.3%.   相似文献   

2.
碳纤维布加固钢筋混凝土梁抗弯承载力的设计计算   总被引:2,自引:0,他引:2  
基于平截面假定的抗弯承载力计算理论,提出了一种考虑二次受力时碳纤维布加固钢筋混凝土梁抗弯极限承载力的实用设计计算方法,理论计算和试验结果比较吻合,可供工程设计参考。  相似文献   

3.
通过对一座无设计资料旧桥现场汽车加载试验,进行静态、动态测试及材料强度测定,估算出控制截面的纵向受拉钢筋数量和正截面抗弯承载力。实测和理论分析结果表明,该桥支座截面抗弯承载力较高,而跨中截面承载力较低。按道路改造设计要求跨中截面必须加固。此次车载试验结果为此类旧桥承载力评定提供了具有一定参考价值的数据。  相似文献   

4.
为了研究有粘结预应力AFRP-钢混合配筋混凝土构件的抗弯性能,基于平截面假定和截面内力平衡条件,推导了预应力AFRP-钢混合配筋混凝土构件适筋破坏情形下正截面受弯承载力以及截面开裂弯矩的计算公式,利用推导的计算公式对五组具有相同整体配筋率、不同初始张拉控制应力的预应力混合配筋构件抗弯性能进行了研究,对预应力AFRP-钢混合配筋构件与普通混合配筋构件的极限抗弯承载力与抗裂承载力进行了对比.研究表明:按照给出的预应力AFRP-钢混合配筋混凝土构件抗弯承载力及开裂弯矩计算公式可较好地反映结构的受力特征;在预应力AFRP筋与普通AFRP筋极限抗拉强度相同的情形下,将预应力AFRP筋代替普通AFRP筋材,对AFRP-钢混合配筋混凝土构件极限抗弯承载力提升的效果并不明显;预应力AFRP-钢混合配筋混凝土构件可以有效地提升结构的抗裂承载能力.在算例中,当张拉控制应力σcon接近于预应力AFRP筋极限抗拉强度的25%时,构件抗裂承载力提升78.7%,从而有效延迟了截面裂缝开裂的时间,增大了结构的抗弯刚度.  相似文献   

5.
带管翼缘的钢-混凝土组合梁抗弯性能试验研究   总被引:4,自引:0,他引:4  
为了研究带钢管混凝土上翼缘的钢-混凝土组合梁在静载作用下的抗弯性能,进行了组合梁静力试验,建立了组合梁有限元模型,进行了非线性静力变参数分析。基于钢材的理想弹塑性模型和圆形钢管约束混凝土模型,建立了正截面抗弯承载力理论分析模型。研究结果表明:新型组合梁满足平截面假定,抗弯承载力大,延性好,钢管内填混凝土与管壁无滑移;极限抗弯承载力随含钢率与钢材的屈服强度的提高而增大,管内填混凝土强度的提高对极限承载力影响不大,但可以显著提高其延性,因此,在新型组合梁设计过程中要考虑内填混凝土强度和上翼缘钢管屈服强度之间的匹配关系;极限抗弯承载力试验值与理论计算值的比值为1.07,说明理论分析模型偏于安全。  相似文献   

6.
为预测界面焊钉锈蚀后钢-混组合梁抗弯承载力, 考虑了焊钉锈蚀后其抗剪强度与混凝土黏结强度和有效面积降低对焊钉抗剪承载力的劣化影响, 提出焊钉锈蚀后组合梁抗剪连接度和锈蚀焊钉抗剪承载力系数的概念及其计算公式; 基于塑性简化计算假定, 采用焊钉锈蚀后组合梁抗剪连接度对其抗弯承载力进行折减, 建立了焊钉锈蚀后组合梁正负弯矩区抗弯承载力计算模型, 分析了23根组合梁抗弯承载力试验结果, 验证了计算模型的有效性。试验结果表明: 在焊钉锈蚀率低于10%时, 试验梁正负弯矩区抗弯承载力的试验值与提出公式的理论计算值非常接近, 其中正弯矩区试验值与计算值的平均比值为1.00, 变异系数为0.04, 负弯矩区二者平均比值为1.01, 变异系数为0, 由此可见, 计算结果与试验结果吻合较好。简化计算方法可用作界面焊钉锈蚀率较小情况下钢-混组合梁抗弯承载力定量和定性分析。   相似文献   

7.
使用多年的混凝土结构或多或少出现病害,需要进行加固,但是考虑二次受力情况下RC加固梁正截面承载力计算公式尚未明确提出。文章通过分析不同初始荷载作用下增大截面法加固钢筋混凝土梁的极限破坏,研究二次受力对最大加固钢筋量及正截面承载力的影响,得到RC加固梁在加固配筋限值范围内正截面承载力计算公式。并与有限元软件分析结果进行对比验证,结果表明公式计算结果与分析结果基本一致,可为结构加固承载力计算提供参考。  相似文献   

8.
提出一种钢-混凝土箱型截面组合梁结构,应用力法计算钢-混凝土箱型截面组合梁的内力,给出负弯矩区的刚度与其长度的关系.连续组合梁是变刚度截面,按弹性分析法给出正负弯矩区的抗弯刚度.对组合梁截面承载力进行分析,得出组合截面弹性极限抗弯承载力与塑性极限抗弯承载力.  相似文献   

9.
为研究超高性能混凝土(UHPC)华夫桥面单向板中纵筋率对其抗弯承载力的影响,利用等效宽度的原理对其进行简化,设计制作了6根不同纵筋率的足尺T梁模型.首先,通过加载试验分别对UHPC的基本力学性能和T型截面UHPC梁的抗弯性能和破坏模式进行研究;其次,根据材料性能试验结果,提出UHPC抗拉与抗压的本构模型,并通过截面分析推导T型截面UHPC梁的极限抗弯承载力计算公式;最后,基于既有研究结果,对所提出的T形截面UHPC梁极限抗弯承载力计算公式进行适用性验证.研究结果表明:由于UHPC具有优异的抗拉强度和拉伸韧性,尽管减小纵筋率会降低T形截面UHPC梁的极限抗弯承载力和延性,但不会改变构件的破坏形式,即T形截面UHPC梁在纵筋率较少甚至不配筋的情况下依然具备延性破坏的特征;根据截面分析推导结果,受拉侧UHPC极限抗拉强度变化系数与纵筋率成正比关系,纵筋率的增大可以更加显著地发挥UHPC的抗拉作用;所提出的公式具有良好的适用性.  相似文献   

10.
为了研究水下不分散混凝土结构的性能,进行了水下不分散混凝土配筋梁与普通钢筋混凝土配筋梁的抗弯性能对比试验.试验结果表明,水下不分散混凝土配筋梁的抗弯性能与普通钢筋混凝土配筋梁的抗弯性能接近.因此,可以用计算普通钢筋混凝土梁受弯的理论计算水下不分散混凝土配筋梁的受弯.  相似文献   

11.
设计了4根钢板-混凝土组合加固混凝土T梁进行抗弯承载力试验,试件的主要设计参数包括损伤程度和植筋间距。采用荷载传感器、位移计和应变计,分别测量了加载过程中试验梁的荷载、挠度、应变、裂缝的产生和发展、新老混凝土界面与钢板-加固混凝土界面的纵向滑移,采用有限元软件ANSYS分析了试件的受力性能,采用塑性方法研究了试件的极限抗弯承载力,并对比了模型试验、数值模拟与理论分析结果。分析结果表明:钢板-混凝土组合加固可使混凝土T梁极限抗弯承载力提高约2倍,植筋间距与原梁弯曲损伤程度对组合加固T梁的极限抗弯承载力影响约为4%,植筋间距越大,新老混凝土界面纵向相对滑移越大,极限抗弯承载力的数值计算值和理论计算值与试验值最大相对差值为9%,因此,模型试验、数值模拟与理论计算结果均表明钢板-混凝土组合加固可显著提高混凝土T梁的极限抗弯承载力。  相似文献   

12.
在试验研究的基础上,利用非线性有限元方法分析了配筋砌块砌体剪力墙在水平竖向荷载作用下的抗剪承载力特性和破坏机理,研究了各种因素对配筋砌块砌体剪力墙抗剪承载力的影响,提出了配筋砌块砌体剪力墙抗剪承载力计算公式。公式计算结果与有限元计算结果相比。具有较好的精度。  相似文献   

13.
PP-ECC梁抗弯性能试验研究   总被引:3,自引:1,他引:2       下载免费PDF全文
为研究聚丙烯纤维水泥基复合材料(PP-ECC)梁与普通钢筋混凝土梁在弯曲荷载作用下力学性能的差异,通过四点弯曲加载,对PP-ECC梁的抗弯性能进行了试验探究. 对PP-ECC梁的弯曲破坏过程进行了阶段划分;基于计算假定和简化后的PP-ECC本构模型推导出PP-ECC梁各阶段的理论临界荷载;通过试验结果对计算模型进行验证,并对比相同配筋率下PP-ECC梁与普通钢筋混凝土梁在抗弯承载力、裂缝发展形态、跨中最大变形以及延性等方面的差异. 研究结果表明:受拉区PP-ECC材料开裂之后并不退出工作而是协同受拉钢筋参与全截面受力;使用简化本构模型计算的PP-ECC梁理论抗弯承载力计算模型精度达到0.83~1.17,具备较良好的精度;PP-ECC梁在达到极限状态时,受拉区呈多裂缝稳态发展,在达到80%极限承载力时,最大裂缝宽度小于0.2 mm;相同配筋率下,PP-ECC梁在每一加载级别的变形、跨中最大变形以及位移延性系数均高于普通钢筋混凝土梁(跨中最大变形和位移延性系数平均提高71.39%和42.84%),并且随着配筋率的提高,跨中最大变形和位移延性系数下降;配筋率相同时,PP-ECC梁的极限抗弯承载力较普通钢筋混凝土梁平均提高6.09%.   相似文献   

14.
不同卸载时外贴CFRP加固RC梁正截面承载力计算   总被引:2,自引:0,他引:2  
依据《混凝土结构设计规范》(GBJ10-89)和《混凝土结构加固技术规范》(CECS25:90),基于平截面假定,考虑二次受力,提出了不同卸载条件下外贴碳纤维加固钢筋混凝土粱的正截面承载力计算公式及其适用条件,理论计算与试验结果比较吻合,可供工程设计参考。  相似文献   

15.
提出用简化计算方法、截面全过程分析和结构有限元分析等三种方法对双面组合连续梁极限抗弯承载力进行分析研究;以某一试验梁为例,对三种不同方法计算得到的承载力进行了比较分析,总结了各种方法的适用性,对双面组合梁的设计和研究有一定参考价值。  相似文献   

16.
采用两点加载的方式,对3片混合设计的高性能HPS 485 W工字钢梁进行抗弯性能试验,分析了截面几何参数对试验梁抗弯承载力、弹塑性变形和破坏形态的影响。结合跨中单点加载的试验结果,对比分析了不同加载方式对试验梁抗弯承载力的影响,建立了能够准确模拟试验梁抗弯过程的有限元模型,在非厚实截面范围内对混合设计的高性能钢模型梁进行了关键参数的数值分析。分析结果表明:对两点加载的试验梁,抗弯破坏形态为纯弯段区出现受压翼缘与受压区腹板的局部屈曲;随着翼缘宽厚比的降低,钢梁的塑性转动能力明显提高;随着腹板高厚比的增加,钢梁的抗弯强度和延性均会降低;对相同几何尺寸的模型梁,加载方式改变时,钢梁的抗弯过程相似,但控制钢梁失效的破坏形态不同;对混合设计的钢梁,建议腹板与翼缘材料强度等级差不大于2个强度等级。  相似文献   

17.
为了提高普通钢筋混凝土梁的耐久性,设计了一种超高性能混凝土(UHPC)-高性能混凝土(HPC)组合梁新型结构,开展了锈蚀后UHPC-HPC组合梁的抗弯性能试验,研究了氯盐侵蚀后组合梁抗弯承载力降低的机理,分析了腐蚀程度、截面形式与预损伤对其抗弯性能的影响;引入钢筋屈服强度折减系数、截面积折减系数与混凝土预损伤系数,提出了锈蚀后UHPC-HPC组合梁抗弯承载力计算方法,并验证了计算方法的可行性。分析结果表明:锈蚀后梁体抗弯承载力降低主要原因为钢筋抗拉强度下降,梁体刚度退化与韧性减弱,钢纤维阻裂效果削弱;锈蚀后UHPC-HPC组合梁的破坏表现为跨中附近出现1条主裂缝或加载点附近出现2条主裂缝;UHPC-HPC组合梁的受力过程分为线弹性、裂缝发展和屈服3个阶段,梁体截面混凝土应变基本符合平截面假定;侵蚀时间越长,组合梁的开裂荷载和承载力降低越大,通电快速侵蚀10 d时,降幅分别达16.2%和10.9%;锈蚀后T形梁比矩形梁开裂早,前者的开裂荷载比后者降低8.1%,后期刚度下降较快;预损伤显著影响梁的整体刚度,预加载后梁的整体刚度降低,混凝土损伤后的预损伤系数为0.984;锈蚀率越大,钢筋的屈...  相似文献   

18.
为解决危旧混凝土梁桥结构性能显著下降的问题, 采用足尺试验研究了应用钢板-混凝土组合加固预应力混凝土小箱梁的抗弯承载性能; 对2片20m跨径钢板-混凝土组合加固足尺梁进行抗弯承载性能试验, 并与1片未加固足尺梁和1片预应力CFRP加固足尺梁的抗弯承载性能试验结果进行对比, 分析了足尺预应力混凝土小箱梁组合加固后的抗弯性能, 研究了加载全过程跨中截面的加固钢板、原梁主筋、顶板混凝土和钢筋与连接构造的应变变化规律; 基于足尺试验结果, 建立了钢板-混凝土组合加固预应力混凝土小箱梁抗弯承载力简化计算公式。研究结果表明: 钢板-混凝土组合加固梁在破坏时表现出明显塑性破坏特征; 与未加固梁相比, 钢板-混凝土组合加固足尺试验梁的极限承载力实测值提高了76%以上, 在正常使用阶段下的刚度提高1倍以上, 因此, 组合加固能显著提高预应力混凝土箱梁的承载性能; 受力过程中试验梁跨中截面应变分布符合平截面假定; 组合加固部分与混凝土箱梁腹板纵向相对滑移小于0.6mm, 因此, 钢板-混凝土组合加固后的试验梁整体工作性能较好; 足尺试验得到的极限承载力与简化公式计算结果的比值分别为1.06和1.01, 因此, 简化公式可靠, 可用于组合加固预应力混凝土箱梁的承载性能计算与分析。   相似文献   

19.
为研究圆管翼缘组合梁的抗弯性能, 进行了3根圆管翼缘组合梁静力加载抗弯破坏性试验, 分析了试验梁的抗弯破坏过程与破坏特征; 考虑混凝土损伤塑性本构及栓钉滑移与断裂, 建立了圆管翼缘组合梁非线性数值模型, 基于试验结果分析了数值模型的适用性; 以钢梁下翼缘宽度、混凝土翼板厚度与圆管管径为主要结构参数, 计算了48根正交设计的圆管翼缘数值模型组合梁的力学性能; 依据试验梁与数值模型梁的抗弯受力性能, 提出了基于简化塑性理论的圆管翼缘组合梁极限抗弯承载力计算公式; 应用数值模型梁位移延性系数计算结果, 回归得到了圆管翼缘组合梁位移延性系数计算公式。计算结果表明: 数值模型组合梁与试验梁承载力比值为0.99~1.03, 挠度比值为0.87~1.09, 因此, 弯矩-挠度计算曲线与试验曲线吻合良好, 可采用数值模型组合梁准确模拟圆管翼缘组合梁的抗弯全过程受力行为; 圆管翼缘组合梁极限抗弯承载力随钢梁下翼缘宽度、混凝土翼板厚度的增大而增大, 随圆管管径的改变变化较小, 位移延性系数随混凝土翼板厚度与圆管管径平方的增大呈线性增大, 随钢梁下翼缘宽度的增大呈线性减小; 不同塑性发展程度的各类模型梁位移延性系数为3.16~7.19, 体现了较好的延性; 采用极限抗弯承载力简化计算公式与圆管翼缘数值模型组合梁计算的极限抗弯承载力比值为0.91~1.09, 平均比值为0.98, 因此, 公式计算结果准确; 为使圆管翼缘组合梁具有一定延性, 建议位移延性系数大于3.5。   相似文献   

20.
素混凝土柱极限承载力计算方法   总被引:1,自引:0,他引:1  
开展了19根素混凝土柱极限承载力试验,提出了素混凝土柱长细比和偏心率的合理取值范围,采用非线性有限元方法对试验柱承载力进行计算,通过理论分析和试验数据回归,提出了素混凝土柱极限承载力计算方法。计算结果表明:当试验柱长细比大于15与偏心率为0.3时,素混凝土柱的破坏模式为截面受拉破坏,未能充分发挥混凝土以受压为主的材料性能;当试验柱长细比不大于15与偏心率不大于0.3时,其破坏模式为截面受压破坏。承载力有限元算法计算值与试验值的平均比值为0.995,方差为0.001 8,计算值与试验值吻合较好,有限元算法可用于素混凝土柱的参数分析。提出的素混凝土柱极限承载力计算方法考虑了长细比和偏心率对承载力影响的耦合作用,其计算值与有限元算法计算值的平均比值为0.976,方差为0.003,表明提出的算法具有较高的精度,且偏安全。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号