首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 94 毫秒
1.
为研究圆管翼缘组合梁的抗弯性能, 进行了3根圆管翼缘组合梁静力加载抗弯破坏性试验, 分析了试验梁的抗弯破坏过程与破坏特征; 考虑混凝土损伤塑性本构及栓钉滑移与断裂, 建立了圆管翼缘组合梁非线性数值模型, 基于试验结果分析了数值模型的适用性; 以钢梁下翼缘宽度、混凝土翼板厚度与圆管管径为主要结构参数, 计算了48根正交设计的圆管翼缘数值模型组合梁的力学性能; 依据试验梁与数值模型梁的抗弯受力性能, 提出了基于简化塑性理论的圆管翼缘组合梁极限抗弯承载力计算公式; 应用数值模型梁位移延性系数计算结果, 回归得到了圆管翼缘组合梁位移延性系数计算公式。计算结果表明: 数值模型组合梁与试验梁承载力比值为0.99~1.03, 挠度比值为0.87~1.09, 因此, 弯矩-挠度计算曲线与试验曲线吻合良好, 可采用数值模型组合梁准确模拟圆管翼缘组合梁的抗弯全过程受力行为; 圆管翼缘组合梁极限抗弯承载力随钢梁下翼缘宽度、混凝土翼板厚度的增大而增大, 随圆管管径的改变变化较小, 位移延性系数随混凝土翼板厚度与圆管管径平方的增大呈线性增大, 随钢梁下翼缘宽度的增大呈线性减小; 不同塑性发展程度的各类模型梁位移延性系数为3.16~7.19, 体现了较好的延性; 采用极限抗弯承载力简化计算公式与圆管翼缘数值模型组合梁计算的极限抗弯承载力比值为0.91~1.09, 平均比值为0.98, 因此, 公式计算结果准确; 为使圆管翼缘组合梁具有一定延性, 建议位移延性系数大于3.5。   相似文献   

2.
带管翼缘的钢-混凝土组合梁抗弯性能试验研究   总被引:4,自引:0,他引:4  
为了研究带钢管混凝土上翼缘的钢-混凝土组合梁在静载作用下的抗弯性能,进行了组合梁静力试验,建立了组合梁有限元模型,进行了非线性静力变参数分析。基于钢材的理想弹塑性模型和圆形钢管约束混凝土模型,建立了正截面抗弯承载力理论分析模型。研究结果表明:新型组合梁满足平截面假定,抗弯承载力大,延性好,钢管内填混凝土与管壁无滑移;极限抗弯承载力随含钢率与钢材的屈服强度的提高而增大,管内填混凝土强度的提高对极限承载力影响不大,但可以显著提高其延性,因此,在新型组合梁设计过程中要考虑内填混凝土强度和上翼缘钢管屈服强度之间的匹配关系;极限抗弯承载力试验值与理论计算值的比值为1.07,说明理论分析模型偏于安全。  相似文献   

3.
对3片足尺预应力混凝土空心板梁进行抗弯性能试验, 其中1片足尺梁不进行加固, 2片分别采用钢板-混凝土组合加固和钢板-预应力混凝土组合加固, 分析了试验梁主要部位的应变、滑移、裂缝分布、承载力、刚度和延性; 基于试验梁塑性破坏机理, 并考虑二次受力的影响, 推导了足尺试验梁的抗弯极限承载力计算公式。试验结果表明: 加固后试验梁的破坏形态表现为塑性弯曲破坏, 跨中横截面变形符合平截面假定; 组合加固钢板与新混凝土之间以及加固部分与原结构之间相对滑移小于0.05mm, 因此, 加固后试验梁各部分协同工作性能较好; 与未加固梁相比, 钢板-混凝土组合加固试验梁抗弯极限承载力提高了1.08倍, 钢板-预应力混凝土组合加固试验梁抗弯极限承载力提高了1.43倍, 因此, 组合加固能显著提高试验梁的极限承载力; 与未加固梁相比, 2片加固试验梁的延性系数均提高了21%, 当试验荷载为200kN时, 2片加固试验梁刚度分别提高了1.55、3.07倍, 因此, 组合加固能显著提高试验梁的刚度和延性; 与钢板-混凝土组合加固技术相比, 钢板-预应力混凝土组合加固技术对试验梁在使用阶段的承载性能和刚度的提高更加明显; 2片加固试验梁抗弯极限承载力的计算值与试验值的比值分别为0.94和0.96, 因此, 抗弯极限承载力计算公式计算精度较高, 可用于钢板-混凝土组合加固预应力混凝土空心板梁的抗弯承载性能计算与分析。   相似文献   

4.
为研究钢板-混凝土组合梁的受力性能,对2片带肋钢板-混凝土组合梁和1片普通钢筋混凝土梁进行了负弯矩区段的试验研究分析以及极限抗弯承载力计算方法的探索。试验表明,钢板-混凝土组合梁在抗弯承载力、刚度上表现良好。提出的钢板-混凝土组合梁极限抗弯承载力弹性-塑性相结合的计算方法,计算值与试验值较吻和。  相似文献   

5.
提出一种钢-混凝土箱型截面组合梁结构,应用力法计算钢-混凝土箱型截面组合梁的内力,给出负弯矩区的刚度与其长度的关系.连续组合梁是变刚度截面,按弹性分析法给出正负弯矩区的抗弯刚度.对组合梁截面承载力进行分析,得出组合截面弹性极限抗弯承载力与塑性极限抗弯承载力.  相似文献   

6.
圆钢管自密实混凝土纯弯力学性能   总被引:5,自引:2,他引:5  
基于合理的钢材和核心混凝土拉压本构模型,利用截面分层法对钢管混凝土纯弯构件弯矩-曲率进行全过程分析,建立了钢管混凝土实用组合抗弯刚度、极限抗弯承载力等计算式和钢管混凝土组合梁单元弯矩-曲率全曲线实用计算方法,通过3根钢管自密实混凝土和1根钢管普通混凝土受弯构件的试验研究,考察了混凝土强度和含钢率对构件纯弯性能的影响。试验结果表明,受弯构件受压区钢管对混凝土产生约束套箍作用,受拉区钢管处于双向受拉应力状态,提高混凝土强度对提高极限弯矩作用不明显,而增大含钢率对提高极限弯矩作用较明显,并且与分层法相比,组合单元法在保证精度的前提下,减少了截面分层,提高了程序的计算速度。  相似文献   

7.
从抗弯性能、延性以及极限承载力等3个方面对钢箱-环氧混凝土组合梁及钢箱-普通混凝土组合梁进行对比试验。试验结果表明,钢箱-环氧混凝土组合梁具有更好的弯曲性能、延性以及极限承载力。  相似文献   

8.
为探究高强钢(HSS)-超高性能混凝土(UHPC)组合梁的抗弯性能,考虑剪力连接度影响,设计并完成3片设置开孔板连接件的HSS-UHPC组合梁跨中两点对称加载试验;对剪力连接度分别为1.02、0.89和0.76的HSS-UHPC组合梁抗弯刚度、挠度、界面滑移、应变分布规律及钢梁与UHPC板的整体工作性能等进行分析,探讨了该型结构的受弯破坏机理;通过建立HSS-UHPC组合梁的ABAQUS非线性有限元计算模型,分析了混凝土强度、翼板厚度、钢材强度三者间的匹配关系,评估了现有简化塑性理论对该型组合梁抗弯计算的适用性。研究结果表明:设置开孔板连接件的HSS-UHPC组合梁具有较高的抗弯承载能力和良好的塑性变形能力,其抗弯刚度和延性均能满足工程使用要求;UHPC板与HSS梁在弹性受力阶段的界面滑移发展缓慢,最大滑移出现在1/8梁长附近;进入塑性受力阶段,界面滑移迅速增大,且最大滑移断面逐渐外移至梁端;剪力连接度对HSS-UHPC组合梁的抗弯性能影响显著,连接度由1.02分别减小至0.89和0.76时,结构的早期抗弯刚度分别降低了7.0%和8.7%,极限承载力也分别减小了9.2%和14.6%,界面最大滑移则分别增大了15.8%和17.0%;对比试验研究、数值模拟和理论计算结果三者吻合良好,数值结果显示采用Q690取代Q460的组合梁抗弯承载力提高了29.0%,但延性下降了39.7%;提高UHPC强度和增大混凝土翼板厚度均能显著改善HSS-UHPC组合梁延性并增强其抗弯承载力。   相似文献   

9.
通过高强次轻混凝土梁的抗弯试验,对高强次轻混凝土梁的极限抗弯承载力、荷载-挠度曲线、延性和裂缝进行了分析,结果表明:与同等强度的轻集料混凝土梁相比,次轻混凝土梁具有较高的刚度,但略小于普通混凝土梁;使用荷载作用下次轻混凝土梁的挠度和裂缝宽度都满足正常使用极限状态的要求.次轻混凝土梁在破坏时都表现出较好的延性.  相似文献   

10.
针对连续组合梁桥负弯矩区桥面板易开裂的问题, 提出了新型钢-混组合梁负弯矩区 UHPC (Ultra-High Performance Concrete) 接缝方案。 使用 Abaqus 有限元软件对试验梁的加载过程进行模拟, 并验证了有限元建模方法的正确性, 分析了 UHPC 层内配筋率、 UHPC 龄期及钢梁下翼缘钢板厚度对结构抗弯性能的影响。 研究结果表明, 新型钢-混组合梁负弯矩区 UHPC 接缝结构具有技术先进性, 配筋率的增大可提高组合梁 UHPC 接缝结构的抗弯能力, UH? PC 龄期的变化主要影响抗裂性能, 而钢梁下翼缘厚度的改变对抗弯承载力的提高作用较为明显; 为充分发挥钢筋的受拉作用, 提高结构的极限承载力, 须采取一定措施防止钢梁提前屈曲。  相似文献   

11.
为解决危旧混凝土梁桥结构性能显著下降的问题, 采用足尺试验研究了应用钢板-混凝土组合加固预应力混凝土小箱梁的抗弯承载性能; 对2片20m跨径钢板-混凝土组合加固足尺梁进行抗弯承载性能试验, 并与1片未加固足尺梁和1片预应力CFRP加固足尺梁的抗弯承载性能试验结果进行对比, 分析了足尺预应力混凝土小箱梁组合加固后的抗弯性能, 研究了加载全过程跨中截面的加固钢板、原梁主筋、顶板混凝土和钢筋与连接构造的应变变化规律; 基于足尺试验结果, 建立了钢板-混凝土组合加固预应力混凝土小箱梁抗弯承载力简化计算公式。研究结果表明: 钢板-混凝土组合加固梁在破坏时表现出明显塑性破坏特征; 与未加固梁相比, 钢板-混凝土组合加固足尺试验梁的极限承载力实测值提高了76%以上, 在正常使用阶段下的刚度提高1倍以上, 因此, 组合加固能显著提高预应力混凝土箱梁的承载性能; 受力过程中试验梁跨中截面应变分布符合平截面假定; 组合加固部分与混凝土箱梁腹板纵向相对滑移小于0.6mm, 因此, 钢板-混凝土组合加固后的试验梁整体工作性能较好; 足尺试验得到的极限承载力与简化公式计算结果的比值分别为1.06和1.01, 因此, 简化公式可靠, 可用于组合加固预应力混凝土箱梁的承载性能计算与分析。   相似文献   

12.
分析了圆截面钢管砼构件在弯曲极限状态下,钢管和砼相互作用而产生的两种套箍作用效果;推导了理想塑性状态下的中和轴位置和极限弯矩的计算方法.  相似文献   

13.
分析了圆截面钢管砼构件在弯曲极限状态下,钢管和砼相互作用而产生的两种套箍作用效果;推导了理想塑性状态下的中和轴位置和极限弯矩的计算方法.  相似文献   

14.
在钢管轻集料混凝土抗剪性能研究的基础上,进行了核心混凝土对钢管混凝土抗剪性能影响的试验.从抗剪试件的变形和应变变化过程的特征人手,分析了不同混凝土类型、不同混凝土强度试件以及空钢管的受力性能差异,对比了核心混凝土在抗剪受力过程中粘结滑移的影响.试验结果表明:钢管混凝土构件在受剪时,钢管对混凝土提供了套箍作用,而核心混凝土填充于空钢管中,可显著提高空钢管的抗剪性能.在参数相同的情况下,钢管轻集料混凝土与钢管普通混凝土构件的受剪性能相当,混凝土的强度对钢管轻集料混凝土构件的抗剪性能影响不明显.钢管混凝土构件在受剪时,核心混凝土与钢管之间存在微小滑移,对抗剪性能的影响可忽略.  相似文献   

15.
应用连续介质力学,确立钢管在纵向初应力作用下的圆钢管混凝土同心圆柱体钢管和混凝土受压时的计算模型,推导了初应力作用下的钢管混凝土组合弹性模量计算公式和组合应力-应变关系全曲线的表达式,分析了不同初应力系数下钢管混凝土加载过程中的钢管轴向应力-应变关系、环向应力-应变关系以及核心混凝土的轴向应力-应变关系、径向应力-应变关系的变化情况,探讨了初应力系数对钢管混凝土力学性能的影响。分析结果表明:随着钢管纵向初应力的增大,核心混凝土的纵向刚度、径向压应力、纵向强度与钢管环向拉应力也有所降低,而相应的钢管纵向压应力有所增加,套箍约束作用和极限承载力也有所降低,但对组合弹性模量影响不大。  相似文献   

16.
钢-混凝土双面组合箱梁是由两个H型钢作钢骨架,并与上下两块混凝土板组合形成的箱形截面,可用于连续梁的负弯矩区。推导得到了负弯矩区截面弹性刚度和塑性极限弯矩的计算公式。建立集中力作用下双面组合连续箱梁负弯矩区的Ansys分析模型,得到了组合梁的荷载挠度曲线、截面应力和应变变化曲线以及钢与混凝土交界面的纵向滑移分布。与双主梁组合梁和普通组合箱梁的受力性能做比较,显示了双面组合箱梁承载能力和变形能力的优越性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号