首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
CRH型电动车组制动距离计算与监控装置制动模式曲线设计   总被引:2,自引:0,他引:2  
通过对CRH型电动车组有关制动距离计算参数的分析研究,提出一套基于制动减速度的动车组制动距离计算方法和计算公式,同时对动车组LKJ列车监控装置制动模式曲线设计的有关问题作了论述。  相似文献   

2.
基于某高速铁路30‰长大下坡道,对制动功能正常及故障工况下的某型动车组紧急制动距离、制动功率及制动能量进行了仿真计算,分析了线路坡度和运行速度对制动功率及制动能量的影响关系。结合动车组紧急制动距离、制动盘热负荷性能曲线及温度限制,给出了动车组在30‰长大下坡道运行的限速运行建议方案。  相似文献   

3.
我国现有动车组技术条件规定了速度350km/h及以下速度等级动车组的制动距离,对于更高运行速度的动车组,国内外均还未有制动减速度参数和制动距离标准。由于动车组的制动动能与速度的平方成正比,动车组在更高运用速度时,施加空气制动会产生更大的热负荷,现有的制动盘的耐热裂性能和抗热衰退性能无法满足。在分析速度350km/h中标准动车组的制动距离、控制减速度等参数基础上,讨论了初速度400km/h的制动距离参数,对于初速度400km/h的纯空气紧急制动EB和UB,分别提出两种制动控制减速度方案,并进行了热负荷计算和制动距离校核,对比之后,给出了合理的方案建议。  相似文献   

4.
以CRH2为例,介绍我国CRH系列动车组制动系统的结构特点、工作模式,对动车组制动系统中的各子系统(如制动控制系统、风源、基础制动系统、电制动系统等)自身的安全保障措施进行了详细剖析,并以此为基础,按照动车组制动系统故障后是否可以继续安全行车的分类原则将制动系统故障归纳为四类,之后对涉及到运行安全的第Ⅲ、Ⅳ类故障进行制动距离计算,得出的结论是:只要动车组的制动力下降幅度≥1/8,列控系统即使处于完全监控模式,也不能保证动车组列车不冒进停车信号;而且列车速度较低时,冒进信号的几率较大,速度较高时,冒进信号的距离较大;另外,当制动力下降到一定程度后,列车在侧向进站的过程中还有可能超过道岔规定限速,存在侧翻的危险隐患。因此,动车组制动系统故障后仅用人工限速的措施并不能保证行车安全,必须采取更加有效的安全防护对策。  相似文献   

5.
介绍了我国CRH系列动车组制动系统的结构、特点,并按照动车组制动系统故障后是否可以继续安全行车的分类原则,将制动系统故障归纳为4类,之后对涉及到运行安全的第Ⅲ、Ⅳ类故障进行制动距离计算,得出的结论:只要动车组的剩余制动力小于列控系统车载设备计算采用的理论制动力,即使列控系统处于完全监控模式,也不能保证动车组列车不冒进停车信号,而且列车速度较低时,冒进信号的几率较大,速度较高时,冒进信号的距离较大;另外,当制动力下降到一定程度后,列车在侧向进站的过程中还有可能超过道岔规定限速,存在侧翻的危险隐患.针对这些安全隐患,提出了CRH系列动车组可只考虑最多2辆车的制动系统发生故障的合理运营条件,并设计出将列控系统车载设备计算采用的理论制动力使用系数值调整到1-2/M(M表示动车组车辆总数)的解决方案,最后通过理论计算,分析了该方案对运输能力的影响程度.  相似文献   

6.
根据动车组制动系统中减速度特性以及相关牵引制动计算和运动学理论,文中提出了一种平直道环境下基于不等距点分割与人工鱼群算法结合的制动计算方法,同时对动车组的制动近似算法产生的计算误差进行分析。首先,根据列车制动原理中相关计算参数来构建动车组制动距离和制动时间的数学模型。然后,利用人工鱼群算法的优化原理并结合不等距分割思想对所建立的动车组制动距离和时间模型进行有效制动计算。最后,通过文中方法所得计算结果与CRH6A型动车组制动系统的性能型式试验实测数据进行对比分析,验证了该方法的可行性和有效性。  相似文献   

7.
针对“神州”号内燃动车组最高运行速度180km/h,动车组监控模式中制动模式曲线计算参数的不同和北京一天津间行车设备采用三显示交流计数自动闭塞,进行了制动计算参数的选择和三种控制模式的比较,并进行了试验验证。试验表明,“神州”号内燃机动车组制动模式曲线设定的计算参数符合实际;北京一天津间最好采用四显示自动闭塞;为了适应目前的三显示自动闭塞,监控模式以连接控制为宜,同时按闭塞分区长度来限速。  相似文献   

8.
动车组及城轨制动计算软件的开发   总被引:1,自引:0,他引:1  
动车组和城轨在运行速度、运行工况、载荷等方面有较大的差异,为了在同一平台上实现动车组和城轨的制动计算,分别研究了适用于动车组和城轨的制动计算方法,开发了集成两种轨道车辆制动计算算法的专用软件。制动计算方法充分考虑了电制动和运行阻力对制动系统的影响,制动计算软件的分段3次样条插值模块能对导入的试验数据进行插值处理,还能实现每车的参数设置、瞬态制动计算和耗风量计算。以8辆编组的速度300km/h动车组为例,介绍了制动计算软件的应用情况。  相似文献   

9.
高速动车组电空制动系统是由气动元件、电子元件和基础制动装置组成的复杂系统。基于现代流体力学的仿真分析软件AMESim建立制动系统中关键气动元件的仿真模型,通过试验数据对仿真模型进行验证和参数修正;将封装的气动元件模型与电子元件模型和基础制动装置进行系统集成,建立单车以及列车级电空制动系统仿真模型。基于列车级电空制动系统仿真模型,对高速动车组电空制动系统参数进行配置和分析,设计高速动车组电空制动系统。在最大常用制动和紧急制动2种工况下对基于仿真模型设计的高速动车组电空制动系统进行验证。结果表明:最大常用制动时减速度仿真值与减速度设计值相符;紧急制动时制动距离试验值为5 670m,仿真计算值为5 795m,相对误差为2.2%,仿真计算值与试验值吻合程度高。  相似文献   

10.
1动车组制动系统特点 电动车组的最高运行速度与其牵引功率有关,但也受其制动能力的限制。电动车组制动能力是指制动系统使动车组在规定的制动距离内安全停车的能力。与普通铁路相比,对电动车组制动系统有以下要求:  相似文献   

11.
为满足轨道交通列车制动系统的设计需要,研究了和谐号动车组制动计算方法。制动计算方法以黏着特性曲线为边界条件,充分考虑了电制动和运行阻力对制动系统的影响,而且结合试验数据计算不同速度阶段和不同载荷下的瞬态参数。基于和谐号动车组制动计算方法,自主开发了制动计算软件,并计算分析了8辆编组动车组的紧急制动性能。  相似文献   

12.
高速动车组牵引特性分析   总被引:1,自引:0,他引:1  
目前,200km/h的交流传动动车组已经运行在沪杭、沪宁既有线上。未来350km/h的交流传动动车组将在京津、沪宁城际铁路和京沪高速铁路上运行。高速动车组具有重量轻、粘着利用好、起动加速度快等特点。以CRH2型4动4拖8节编组为例,介绍交流传动动车组牵引加速度、牵引力、制动力和制动距离等的计算,以及在故障情况下的运行特点。  相似文献   

13.
制动系统是高速列车关键技术之一。随着列车运行时速的提高,采用组合制动方式来保证高速列车紧急制动时达到规定的制动距离成为常见的做法。近年来,传统机械制动方式日趋成熟,因此,不依赖轮轨间黏着的非黏着制动方式越来越受到相关设计人员的重视。介绍了一种基于某型速度400km/h动车组列车开发的高速列车"蝶形"风阻制动装置,该型风阻制动装置采用小型风阻板进行空气动力制动,质量较轻,结构较简单。通过在车顶合理布置,可将风阻制动力分散于整车,提升紧急制动时的运行稳定性。阐述了其基本原理、开闭机构、响应时间等性能和技术指标,并采用计算流体力学(CFD)方法对其进行了不同工况下制动力的计算评估。  相似文献   

14.
回转质量系数对高速列车牵引电算的影响   总被引:4,自引:0,他引:4  
高速铁路电动车组在列车编组方式、牵引及制动性能、列车运行控制模式等方面与普速铁路旅客列车有着较大区别。本文以高速动车组列车牵引计算特点分析为基础,从回转质量系数因素阐述了高速列车牵引计算指标参数的影响,并推导了基于回转质量系数的高速列车加速度、运行时分、加速距离及制动距离等指标国际单位制表达式,最后以CRH3型动车组及京津城际铁路线路纵断面为依据,进行模拟计算分析得出回转质量系数对牵引计算指标的影响规律。  相似文献   

15.
200 km/h动车组制动控制装置试验台简介   总被引:2,自引:2,他引:0  
栾军  王明海  庞元凤 《铁道车辆》2007,45(7):36-36,43
随着我国200km/h动车组技术的引进和生产,急需配备相应的试验装备。200km/h动车组制动控制装置是关系到列车安全运行的关键装置,而目前国内尚无对其性能进行检测的试验装置。为此,四方车辆研究所研制开发了具有良好兼容性的200km/h动车组制动控制装置试验台。  相似文献   

16.
动车组制动安全性研究   总被引:1,自引:0,他引:1  
动车组制动的安全性是列车安全运行的根本保障。为此需要列车有足够的制动能力来保证列车在规定的制动距离内安全停车。制动系统在安全性上具有高度冗余性,即使制动系统出现故障,也能保证列车安全停车,或在可控状态下安全运行。动车组制动系统具有良好的故障诊断功能,使制动系统始终处于受控状态,可以及时查找故障并分析故障成因。  相似文献   

17.
和谐号动车组基础制动装置   总被引:1,自引:0,他引:1  
和谐号动车组基础制动装置是高速列车在制动系统其他制动措施失效情况下的最后一道安全保障。在分析高速动车组基础制动装置基本要求的基础上,介绍了和谐号动车组基础制动装置的工作原理、组成、选型原则及试验方法。  相似文献   

18.
针对动车组部分车辆制动系统故障后,采取切除故障车辆制动力的处理方式,从安全防护曲线的生成与实际制动过程的角度出发,对在完全监控模式下的列车防护算法及制动过程进行仿真。分析单限速区段和多限速区段速度防护曲线的算法和切除部分制动力后实际制动曲线与速度防护曲线的关系,找到触发各类制动的转换点,对切除不同比例制动力后实际制动曲线进行仿真,得出不同坡度和制动初速度下、切除不同比例制动力时的制动距离。针对动车组因故障切除部分制动力后,产生过走距离,存在冒进信号点的可能,参照防护曲线生成机理,给出兼顾制动力故障的ATP安全防护方法,分析按该方法运行时对通过能力的影响。  相似文献   

19.
制动系统作为动车组关键技术,是动车组运行的可靠保证。制动系统控制技术作为制动系统的中枢,是实现整车制动力管理与分配的核心。制动系统具有列车级主控功能,能够实现全列车制动力管理、分配和计算。将针对各制动工况对CRH380B动车组制动力的控制实施进行分析,并结合其他典型动车组的制动控制模式进行分析研究。  相似文献   

20.
CRH_3高速动车组牵引特性分析   总被引:2,自引:0,他引:2  
目前300~350 km/h的交流传动动车组已在沪宁、沪杭高铁线路及京津、武广城际铁路上运行。高速动车组具有重量轻,粘着利用好,启动加速度快等特点。以CRH_3型4动4拖八节编组为例介绍交流传动动车组牵引加速度、牵引力、制动力和制动距离的计算,以及牵引系统在故障情况下的运行特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号