首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 499 毫秒
1.
针对O'ZBEKISTON型机车车轮轮芯低温性能的要求,对比分析了几种相关材料的机械性能,并通过试验选取ZG2OSiMn作为机车车轮轮芯的设计材料.  相似文献   

2.
脉冲涡流(Pulsed Eddy Current,PEC)检测技术是用于检测铁磁性材料近表面缺陷的一种新型无损检测技术,它是利用脉冲信号进行激励,并对脉冲响应的一定特征参数进行处理的涡流检测方法,通过判断检测到的磁场最大值出现时间来达到对被检工件缺陷定性、定位和定量的目的.通过对铁路机车车轮轮芯质量状况及其检测手段现状进行调查,并就脉冲涡流检测技术的工作原理、脉冲涡流检测仪设计和研制中的关键技术,以及在铁路机车车轮检测中的现场应用效果进行了论述,说明脉冲涡流检测技术是当前检测机车车轮轮芯缺陷的先进方法.  相似文献   

3.
组合材料车轮结构强度分析   总被引:1,自引:0,他引:1  
开发了由铝合金轮芯和钢制轮辋的组合材料车轮结构,其结构质量比传统钢制车轮质量减小25%以上,能有效降低一系簧下质量。用ANSYS有限元软件建立组合材料车轮的有限元模型,基于UIC 510-5标准和DVS 1608标准对组合材料车轮的铝合金轮芯和钢制轮辋的静强度及疲劳强度进行分析。结果表明:与传统钢制车轮结构相比,由铝合金材料制造轮芯的组合材料车轮,具有较低径向刚度的优点,其在列车运行过程中轮芯主要承受压应力,充分发挥了铝合金材料抗压性能优于抗拉性能的优点,保证了铝合金轮芯具有钢制车轮的静强度和疲劳强度性能。  相似文献   

4.
为了研究制动温升引起的热负荷对机车车轮疲劳强度的影响,现采用有限元法对紧急制动过程中车轮温度场和应力场的变化进行了仿真,并基于单轴疲劳理论对车轮的疲劳强度进行了分析.结果表明:热负荷引起踏面周向高达750MPa的动应力循环是诱发轮箍热疲劳的主要因素;轮芯某些区域的von Mises等效应力会升高50%,并且紧急制动可以致使轮芯的循环动应力幅值产生15%波动,从而增加了车轮发生疲劳破坏的几率.  相似文献   

5.
《机车电传动》2021,(3):73-79
弹性车轮螺栓用以紧固轮芯和安装环,在工作过程中承受预紧力和拉伸载荷,其应力状态对弹性车轮的运行安全至关重要。通过建立弹性车轮三维有限元模型,模拟螺栓在螺栓载荷作用下的初始受拉状态,利用接触单元和目标单元模拟各部件之间的接触状态,设置过盈量模拟轮芯与安装环之间、橡胶与轮辋之间的初始过盈接触状态。参考国际铁路联盟标准UIC 510-5和欧洲标准EN 13979-1,计算分析螺栓失效对弹性车轮整体静强度的影响。研究结果表明,螺栓未发生失效时,车轮各部件的危险系数均不超过0.61;综合分析多种工况下轮芯、安装环、螺栓和橡胶块的最大Von-Mises应力,其应力均随螺栓失效个数的增加而增大;螺栓失效后,运行工况下轮辋的最大Von-Mises应力无明显变化;当5个螺栓发生失效后,轮辋、轮芯、安装环、螺栓和橡胶块的危险系数分别为0.27, 0.92, 1.01, 0.95, 0.40。所得结论可为轨道车辆弹性车轮静强度校核提供参考。  相似文献   

6.
提出了利用小角度纵波探头对机车长毂轮芯进行超声波探伤的方法,对小角度纵波探头进行了设计  相似文献   

7.
和谐型大功率机车车轮踏面剥离已经成为机车惯性质量问题。机车车轮踏面剥离原因比较复杂,很多资料从机车车轮材质、构造特性、线路条件、空转伤损等方面研究较多。结合现场实际,重点从使用机砂品质入手,采用现场调研与检测相结合的方法进行研究;大功率机车用砂品质不良会加速机车车轮踏面剥离的发展,合理规范机车用砂标准对延长机车车轮踏面剥离的发展周期和车轮使用寿命具有积极意义。  相似文献   

8.
由于缺少有效的检测手段,机车车轮多边形这类危害程度高的踏面损伤问题长期被忽视。随着铁路车辆运行品质轨边动态监测系统(TPDS)探测机车车轮的新突破,为机车车轮多边形检测提供了有效的动态检测方法。文中以TPDS系统动态监测机车车轮多边形的联网监测数据为基础,通过大数据分析,揭示我国铁路机车车轮多边形分布及演变规律,并对机车车轮检修提出合理化建议。  相似文献   

9.
以30 t大轴重货运机车为平台,进行机车轮装制动盘的结构设计、材料选型、有限元分析验证、工艺设计等工作并完成机车制动盘的样品试制,1:1型式试验显示该机车制动盘能满足30t大轴重货运机车的使用要求。  相似文献   

10.
和谐1型系列交流传动重载高速电力机车轮对技术   总被引:3,自引:2,他引:1  
和谐1型(含HXD1、HXD1B、HXD1C)系列交流传动重载高速电力机车是目前国内高速重载运输的主型机车,机车轮对重载技术的突破至关重要。文章主要介绍了和谐1型系列大功率交流传动重载货运机车轮对技术及相关标准规范的适用性,通过对车轮、车轴分析,材料研制及相关试验验证,表明机车轮对技术完全能够满足高速重载情况下的运用要求,并为今后机车向更高技术发展奠定了坚实的基础。  相似文献   

11.
本文基于数理统计理论,研究一种机车车轮磨耗统计数据处理方法并建立机车车轮镟修周期预测模型。以D20E型机车车轮磨耗统计数据为算例,按照χ2标准分别对其与7种概率分布的合适性进行了检验。通过分析可知,正态分布模型能准确反映该型机车车轮的实际磨耗情况。采用该统计模型绘制D20E型机车车轮磨耗速率的密度分布与概率分布曲线,并计算了其统计数据特征。根据磨耗到限车轮所占比例,预测了不同的机车车轮镟修周期。在保障机车行车安全的前提下,建议D20E型机车的镟修周期为22万km。由该统计学方法计算得到的车轮镟修周期更加符合机车的实际运营情况,能够在一定程度上降低铁路的运营成本。  相似文献   

12.
阐述HX_D1型机车车轮不圆度状态。对4种干线HX_D1型机车超过4 000个车轮进行不圆度测试。基于现场试验获得的大量数据探讨制动系统、制动控制方式和车轮镟修定位方式对车轮多边形的影响。研究结果表明,HX_D1、HX_D1C型机车车轮存在17~19阶多边形磨耗,HX_D1B、HX_D1D型机车车轮主要以偏心磨损为主。HX_D1型机车车轮多边形与制动系统和制动控制方式关系不大,与车轮镟修时的定位方式关系较大。  相似文献   

13.
为研究米轨机车车轮多边形化对机车系统动力学性能的影响,建立米轨机车动力学模型,研究车轮多边形的谐波阶数和波深幅值对动力学性能的影响,并计算不同谐波阶数下车轮多边形的波深限值,最后对车轮多边形和轨道激励共同作用下轮轨垂向力的变化趋势进行分析。结果表明:由于米轨机车运行速度较低,车轮多边形化会导致低频振动,使得车体振动响应增大;车轮多边形化会极大地增加轮轨垂向力,但对脱轨系数影响不大;波深限值与机车运行速度及车轮多边形谐波阶数成反比;轨道激励不仅不会掩盖多边形的作用趋势,而且会极大地增加轮轨垂向力。机车在线路上运行时应经常检测车轮不圆度,并及时镟修或者更换车轮,防止出现轮轨垂向力过大或跳轨现象。  相似文献   

14.
分析了当前机车车轮剥离的一种原因 ,提出减缓我国机车车轮马氏体剥离和制动剥离的方法。  相似文献   

15.
针对轨道参数对机车车轮磨耗的影响问题,以D20E型内燃机车为例,借助SIMPACK软件建立了机车动力学模型。提出根据机车动力学模型、FASTSIM算法与Zobory磨耗预测模型为一体的机车车轮磨耗预测模型,并编制了相应计算程序。利用该模型,分析轨道主要参数对机车车轮磨耗的影响。结果表明:车轮磨耗深度随曲线半径增大而迅速减小;随着轨距的增加,车轮磨耗深度明显降低,磨耗分布范围有所增加;五级谱、六级谱下车轮圆周磨耗深度较四级谱下的结果低;线路等级越差,车轮磨耗分布范围越宽;轨底坡的适当减小可使得车轮磨耗有一定降低;适当减小摩擦系数对于降低轮轨磨耗是有利的。  相似文献   

16.
通过车轮检验及在线试验,根据轮轨蠕滑理论,研究了HXD1型机车车轮空转滑行对车轮踏面剥离的影响,结果表明HXD1型机车车轮的空转滑行会引起轮轨间较大的摩擦温升,从而加剧车轮踏面剥离,并从机车牵引特性、黏着控制、防滑性能及增黏沙砾特性等角度,分析了抑制车轮空转滑行、减小车轮踏面剥离的可行性措施。  相似文献   

17.
机车车轮在线探伤自动检测装置   总被引:2,自引:1,他引:1  
介绍了机车车轮在线探伤自动检测装置的组成和功能,从超声波探伤机车车轮的原理和方法进行了说明,并对装置的应用情况进行介绍。该检测装置适应铁路机车车轮超声波探伤技术发展的需求,缺陷检出率高,定位准确,提高了检测可靠性。  相似文献   

18.
本文从SS7E型机车在西安机务段运用实际,简要分析了机车车轮踏面剥离原因及形成机理,通过采取积极有效地措施,减少了机车车轮踏面的剥离频率。  相似文献   

19.
重点介绍了ISO、JIS、EN、AAR车轮标准,以及铁道行业机车车轮标准制定的背景,并对我国标准TB/T 3469—2016《机车用辗钢整体车轮》中的钢种和技术指标进行了解析。随着国产化机车车轮装车应用的扩大,通过积累数据分析,提出了对TB/T 3469—2016需完善的内容和建议。  相似文献   

20.
运行在西陇海铁路线郑州至西安间大功率HXD1C型机车车轮踏面剥离比较普遍,通过对该型机车性能结构、运行线路状况及车轮踏面剥离的形貌特征分析,找出车轮踏面剥离的真正原因,制定针对性预防措施,最大限度减少车轮踏面剥离.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号