首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
挤扩支盘灌注桩承载特性试验研究   总被引:4,自引:0,他引:4  
挤扩支盘灌注桩是一种具有高承载力和低沉降量特性的新型桩。本文在采用自平衡法静载荷试验的基础上,分别对浙江嘉兴和湖州两个工程中的同一场地挤扩支盘灌注桩与普通直孔灌注桩进行对比试验研究。结果表明,在同等工程地质条件下挤扩支盘桩提高承载力可达75.3%,并能减少沉降和缩短桩长,具有良好的经济效益。此外,对挤扩支盘桩的承载力公式进行讨论并提出建议,对该新型桩在工程上的应用提供了理论依据和参考。  相似文献   

2.
挤扩支盘桩受力机理试验研究   总被引:10,自引:0,他引:10  
崔江余  吕勤 《铁道学报》2002,24(3):62-66
通过36根室内模型桩和2根足尺挤扩桩的试验研究,分析探讨挤扩桩的受力机理及承载力性状;同时收集调研了21根工程挤扩桩试验资料,室内外试验中,通过埋设在支或盘部位的土压力盒和沿桩身布置应变计,分别测试支或盘分担荷载的传递规律,此外,对挤扩支盘桩的承载力标准值及变形公式提出建议,对该新桩型在工程上的应用提供了理论依据。  相似文献   

3.
挤扩支盘灌注桩应用于结构地基的抗浮,可解决许多技术缺欠,使地基起到抗压和抗拔的双重作用.介绍挤扩支盘抗拔桩在地铁车站抗浮工程中的设计应用、施工方法和力学特性,以及在抗浮工程中的优越性及经济性,为保证地铁车站的安全运行打下坚实的技术基础.  相似文献   

4.
结合广州新电视塔工程,采用混凝土短柱模拟工程桩,经过受压与受拉不同荷载方向下的桩侧摩擦力试验研究,研究其在抗压和抗拔力作用下桩土侧摩阻力性能变化.试验研究表明:桩与围岩相互作用在不同受力状态下表现出不同特点,抗压摩阻力特征值大于抗拔摩阻力特征值,抗压摩阻力/抗拔摩阻力为1.85左右;在试验过程中,抗压侧摩擦力大于抗拔侧摩擦力的原因在于被动土压力大于主动土压力;在工程应用中,需要抗拔分项系数γ作为抗拔力设计值的安全储备,本工程抗拔分项系数γ可取1.5~2.0.  相似文献   

5.
单桩在承受上拔或下压荷载时,其桩侧极限摩阻力相差较大,桩身泊松效应是重要的影响因素之一.考虑泊松效应对桩-土界面法向应力的影响,推导得到上拔与下压荷载作用导致的桩侧极限摩阻力改变量的表达式;根据双曲线荷载传递模型,得到考虑泊松效应的的τ-z曲线;在位移协调法的基础上,通过迭代更新桩底位移使桩顶轴力与桩顶荷载相等,提出各级荷载作用下桩身位移响应的计算方法;基于Matlab开发平台编制单桩在竖向荷载作用下Q-S曲线和抗拔系数的计算程序,通过与现场试验数据对比验证了本文计算方法的可靠性.研究结果表明:单桩的抗拔系数随着桩土平均模量比的增大而增大,但其增长速率逐渐减小;随着长径比的增大,单桩的抗拔系数线性减小.随着桩土平均模量比的增大,抗拔系数受长径比的影响逐渐减小,当桩土平均模量比为6000时,抗拔系数几乎不随长径比的改变而变化.  相似文献   

6.
PHC桩大量用于软土地区地基加固中,沉桩过程产生的挤土效应会对先打入的桩以及邻近构筑物产生严重影响。通过理论分析与现场试验相结合的手段,研究了基于圆孔扩张理论,考虑沉桩顺序影响的双桩挤土位移场的解析计算过程,并用现场试验研究了沉桩顺序对双桩迎桩面、背桩面、双桩中间土挤土位移的影响,分析了不同沉桩顺序对邻近构筑物的影响规律。研究表明迎桩面土体位移将不断累加,且明显大于背桩面土体位移。  相似文献   

7.
地震导致的土体液化侧移,使得轴横向受荷桩的受力与变形十分复杂。根据桩周土体的液化程度将基桩分为非液化段、液化段和嵌固段,建立考虑桩土相互作用的简化受力模型。结合土体液化侧移模式以及基桩受荷特点,推导各特征桩段的挠曲变形微分方程,并给出相应的幂级数解答。通过与试验测试结果进行对比,检验本文方法的合理性。在此基础上,探讨土体液化侧移量、荷载分布形式以及嵌固深度等对基桩的影响。分析发现:土体液化侧移量每增加30cm,基桩桩顶水平位移增加5.8mm,桩身最大弯矩增大95.6kN·m;与竖向荷载相比,横向荷载对基桩的影响更大,横向荷载每增大50%,桩顶水平位移及桩身最大弯矩分别增加65%和54%,但基桩的"P-Δ"效应也不容忽视;改善基桩的嵌固深度可以提高基桩的抗震性能,但到达一定深度后,其效果并不明显。  相似文献   

8.
为了解决地下结构的抗浮问题,分析了国内多种抗拔措施,如"一压二拉"、降水等。阐述了水泥土支盘桩的结构组成、抗拔机理,对比分析了抗拔承载力的几种计算方法,并结合郑州东区某工程应用实例进行研究,研究结果表明:与混凝土灌注桩相比,水泥土支盘桩具有造价低、承载力高、施工速度快等显著优势,相同条件下,水泥土支盘桩每m可节约造价23%,承载力提高22%,施工工期缩短30%,建议推广使用。但在应用过程中还存在一些不足之处,如对影响桩抗拔性能的因素考虑还不够全面,使得桩的抗拔承载力未能充分发挥,需要进一步对桩身结构进行改进和优化,以确定合适的支盘直径、数量、间距等。  相似文献   

9.
当基桩设置于临坡地段时,由于靠斜坡一侧土体抗力的削弱作用,其水平承载能力将明显减少。为考虑该削弱效应,基于小比例模型试验提出一个针对临坡段水平受荷桩的改进土体被动楔体模型,该模型根据楔体发展深度的不同,可将土体被动楔体形状分为3种情况,从而充分考虑斜坡形态及基桩临坡距离的影响。在此基础上,根据临坡段与水平面水平受荷桩的差异,提出等效拓展深度的概念,将其导入土体传统p-y曲线方程,进而获得可考虑斜坡削弱效应的水平受荷桩的内力及位移求解方法。运用该方法对临坡水平受荷桩的室内模型试验及现场试验观测进行对比,对比结果表明,本文方法与实测数据吻合良好。  相似文献   

10.
通过ANSYS建立三维有限元模型和线弹性地基反力法计算模型,分别计算出水平受荷桩在不同模型下的计算结果,并进行对比,得出在荷载较大、桩周土体进入塑性区时,采用弹性地基反力法计算桩身受力和变形是不合适的;而在荷载较小、桩周土体处于弹性状态时,采用线弹性地基反力法计算出的桩身受力及变形情况与实际情况比较相符合.并根据实际应用情况,推荐使用m法计算地基反力.  相似文献   

11.
依托鲁南高铁曲阜东站并轨段路基工程,开展预应力管桩群桩成桩现场试验,研究大面积静压群桩对邻近场地挤土变形影响。结果表明:大面积静压群桩过程中,土体横向水平位移与地表隆起位移随成桩排数的增多而逐渐增大;位移发展经历快速、慢速及逐步稳定3个阶段;横向水平位移沿深度总体上呈减小趋势,其分布与土层性质有关;地表隆起位移随距试桩区水平距离的增大呈指数型衰减;该试验条件下,先成桩的微型桩对后压入的管桩挤土效应具有隔离作用,引孔深度15和20 m对横向水平位移及地表隆起位移的防控效果显著;压桩完成时,地表横向、竖向位移的影响范围分别约为88倍和30倍桩径;单排压桩新增位移量随压桩排数的增加呈先增后减趋势,表明前排压桩引发的挤土变形影响比后排压桩更大。  相似文献   

12.
为了深入揭示桩板路基结构中引扩孔灌浆扩体预制桩的承载特性与荷载传递机制,研究预制桩扩体截面尺寸、桩顶承压方式以及截面组合形式对扩体桩中预制桩-扩体-周围土协同作用的影响规律,在2个试验区开展了9根试桩的静载荷试验。试验区A是内部管桩承载的5根扩径0~1 200 mm扩体预制桩,试验区B是内部管桩承载和全截面承载的2根小直径管桩扩体桩以及2根大直径管桩扩体桩。试验结果表明:外围水泥砂浆的设置可将内部管桩荷载有效传递至周围土体,提升整体承载性能,当水泥砂浆厚度由10 cm增加到25 cm时,同级荷载作用下桩顶沉降降低约44.3%~59.5%,但随水泥砂浆厚度的进一步增加,该变化趋势不明显,试验工况下外围水泥砂浆厚度的合理取值范围为15~25 cm;内部管桩承载工况下扩体桩中管桩-砂浆界面阻力呈两端大、中间小的分布模式,受内部管桩和周围土侧阻力综合作用,水泥砂浆厚度小于15 cm时可能在桩顶附近出现拉应力;全截面承载工况下管桩-砂浆界面阻力受桩顶等位移作用影响发挥相对较小,但随着深度增加呈逐渐增大的变化趋势,在整体承载性能上与内部管桩承载工况大体相当;内部预制桩直径的增加可显著提高扩体桩的承...  相似文献   

13.
依托国家电网路平—富乐500 k V双回线路工程中嵌岩抗拔桩极限载荷试验,针对其中3根等截面抗拔桩,对其上拔荷载-桩顶位移关系,桩身轴力及桩身侧阻力等特性进行了分析。结果表明:在本试验研究范围内,相同的岩土层中,增加桩长,可以显著提高抗拔桩的极限承载力,减小桩身位移。岩性是影响抗拔桩极限承载力的重要因素,相同厚度各岩土层提供抗拔力的能力比(即各岩土层的桩侧阻力之比)为土层∶强风化砂岩∶中风化砂岩=1∶3.8∶9.3;随着嵌入中风化砂岩深度的增加,抗拔桩极限承载力呈近线性增加。  相似文献   

14.
扩底楔形桩沉桩施工过程数值模拟分析   总被引:1,自引:0,他引:1  
扩底楔形桩是一种可以有效发挥桩侧摩阻力和桩端阻力、降低负摩阻力影响的新型纵向变截面桩;然而针对其沉桩施工过程中的挤土效应、沉桩阻力等研究则相对较少。基于PFC数值分析软件,建立扩底楔形桩和等体积混凝土用量的常规等截面桩的沉桩施工过程模拟数值模型;通过与等截面桩沉桩模型试验和圆孔扩张理论计算结果的对比分析,验证了本文所建立的数值分析模型的准确性和可靠性;对比分析扩底楔形桩和等截面桩沉桩过程中桩周土体位移场、应力场以及沉桩阻力等变化规律。研究结果表明:沉桩过程中桩端阻力值的大小,不仅与横截面面积有关,而且与桩侧界面形式有关;本文数值模型情况下,扩底楔形桩静压沉桩施工桩端阻力、桩侧摩阻力和整体沉桩阻力分别是等截面桩的1.8,1.1和1.5倍。  相似文献   

15.
高压旋喷桩在湿软黄土地基加固时效果良好,施工方便,适用于黄土地区既有路基帮宽工程地基处理,但其施工过程中会产生挤土效应,影响既有线路的运营安全。以某在建高速铁路引入既有城际铁路工程为依托,结合挤土试验和实测数据,探究高压旋喷桩施工对既有铁路路基变形影响规律。结果表明,对于单桩挤土试验,高压旋喷桩挤土效应与桩周土体距桩心距离呈负相关变化,距离桩心越近,挤土效应越明显。高压旋喷桩沿竖向挤土效应与土层位置、土层压缩系数和湿密度等相关,沿桩深度方向周围土体侧向位移变化在埋深0~5 m范围最为显著。高压旋喷桩施工后,周围土体会出现回缩现象,现场测试各测斜孔回缩值在0~2 mm之间。多桩施工时,高压旋喷桩周围土体会产生位移累积效应,挤土试验中所选4根桩全部施工完成后,距桩心2 m位置处的测斜孔,其侧向位移在埋深0~2 m范围达8 mm以上。既有路基变形实测发现,应力释放孔和高压旋喷桩施工时可导致既有路基上拱或沉降,既有路基监测点最大累计上拱量5.95 mm,最大累计沉降量7.13 mm。通过采取在既有路基坡脚设置应力释放孔、高压旋喷桩由内向外施工并严格控制高压旋喷桩施工参数的措施,可保证既有线路基...  相似文献   

16.
埋入式后压浆管桩作为一种新型桩基础,集钻孔灌注桩和预应力管桩的优点于一体,可以解决灌注桩桩身质量不可靠和预应力管桩沉桩困难等问题。对埋入式后压浆管桩的竖向抗拔试验进行CT扫描,得到不同位移状态下模型桩的CT扫描图像,直观地揭示破坏面的发展规律,并建立破坏面方程。对其他学者提出的抗拔桩破坏面方程进行优化,通过静力平衡方程,获得优化后破坏面方程对应的埋入式后压浆管桩抗拔极限承载力函数,并采用遗传算法确定优化后破坏面方程的参数。将多种理论假定破坏面与试验获得的破坏面进行对比分析,验证所得破坏面方程的准确性。研究发现:埋入式后压浆管桩在上拔位移到达0.45倍桩径时发生破坏,此时灌浆层与土体紧密结合,两者之间未出现明显位移,破坏仅发生在灌浆层之外的桩周土体中;破坏面从桩底向桩顶延伸,越靠近桩顶,破坏面距离桩身越远,破坏面在桩底与混凝土侧壁相切,在地面与水平面的夹角接近42°,呈喇叭形破坏;本文的理论假定破坏面与试验获得的破坏面的相关指数R2=0.97,前人的理论假定破坏面与试验获得的破坏面的相关指数R2=0.91,本文的破坏面方程更加贴近试验获得的破坏面。研究成果对埋入式后压浆管桩的设计计算具有...  相似文献   

17.
在分析静力压桩过程的作用机理和数值模拟关键力学问题的基础上,选用某实际工程的层状地基条件,建立单根预应力高强混凝土管桩压桩过程的有限元分析模型,进行层状地基条件下桩周挤土压力和水平位移的数值分析,并与平面应变条件下圆孔扩张解析法比较。数值分析结果表明,层状地基条件下,桩周土弹性区水平位移受深度效应和土层性质影响不明显;同一土层的桩周径向压力均随深度增加而增大;在软硬土层交界处,桩端接近硬层底时桩周压力显著减小,桩端接近软层底时桩周压力显著增大;平面应变条件下,应用圆孔扩张法求解浅层地基弹性区土体水平位移时计算结果偏大,求解桩周压力时计算结果显著偏小。  相似文献   

18.
对于抗拔桩的计算模型,从其在受拉、受压不同工况下的受力状态入手,提出一种基于桩基承载力发挥过程的"多段线-荷载位移模型",并与目前常用的单一弹簧模型进行对比分析,计算结果表明,"多段线-荷载位移模型"考虑了抗拔桩在受拉、受压不同受力工况下刚度的不同,并且能反映桩基承载力在达到极限值(特征值)后不再随桩顶位移增加而加大的受力状态,更符合工程实际。  相似文献   

19.
目前膨胀土中桩基设计仍基于非膨胀土力学的设计原则。基于FLAC3D采用热-力耦合方法实现吸热膨胀来模拟膨胀土的吸湿膨胀,并重点阐述温度场模拟湿度场的关键参数取值方法。建立膨胀土中单桩三维实体模型,得出渗水作用下膨胀土中单桩的荷载变形特性、桩侧摩阻发挥特征,并分析了桩长、桩径、膨胀系数等对单桩承载特性的影响规律。研究结论:非扩底桩最小桩长宜大于2倍膨胀影响深度;细长桩比短粗桩更能有效降低膨胀土中桩顶的位移。该方法可获得渗水作用下任一时刻的桩身受力变形特性,为研究膨胀土中桩基受荷性能提供一种可行的变通手段。  相似文献   

20.
针对桩承式路堤,分别建立二维和三维离散元分析模型,开展土拱形成过程数值模拟。从细观角度研究不同路堤高度条件下桩承式路堤土拱形态和荷载传递机制,获得土拱效应充分发挥条件下的土体沉降模式,其模式呈现为椭圆形拱状。二维分析结果表明,当路堤填土高度达到一定值时,其高度约为0.8倍桩净距。由于二维土拱模型只能反映一个截面上的土拱效应,因而高估了路堤荷载传递效率。相比二维Trapdoor分析结果,三维条件下土拱效应充分发挥时所需的桩-土差异沉降更大,桩顶和桩间土压力随差异沉降的变化速率更慢,荷载传递效率更低且受填土高度影响更高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号