首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究快速地铁列车在隧道内运行时的“列车-隧道”耦合空气动力特性,在杭海城际铁路开展实车试验,分别对列车以100 km/h与120 km/h的速度通过隧道时的车内外压力变化情况进行研究,计算压力峰-峰值、3 s压力变化幅值与1.7 s压力变化幅值,对比列车进隧道与出隧道过程中车内外压力变化情况,分析不同车辆编组位置与不同列车运行速度对车内外压力变化的影响,研究空调机组状态与车内压力变化幅值之间的关系。研究结果表明,快速地铁列车进出隧道过程中压力变化幅值相近;列车进入隧道并在隧道内运行时,尾车车内压力变化速率最快,车外压力峰-峰值从头车向尾车逐渐减小,而车内压力峰-峰值沿车长方向基本不变;当列车速度不同时,车内外压力对比应在无量纲时间下进行,随着列车速度的增大,车内外压力峰-峰值增大,压力变化速率加快;关闭空调机组可以显著减小车内压力变化速率,可为乘客舒适性研究提供参考。  相似文献   

2.
随着列车运行速度的提高,隧道空气动力学问题越来越突出。2005年5月在遂渝线进行了高速列车过隧道试验,对列车和隧道内空气压力变化、隧道内列车风和隧道口微气压波等参数进行了测试。结果表明:隧道内列车风风速与列车运行速度成线性关系,并且与车头和车尾的外形、列车长度、隧道截面面积及其长度等因素有很大关系;隧道壁面压力近似与列车运行速度的平方成正比;同等速度条件下,钝头型的25T提速客车引起的隧道壁面压力变化幅值比流线型动车组的大38.6%;由于双层集装箱列车较高且集装箱间的间距较大,致使同等速度下引起的隧道壁面压力变化最大;隧道入口的压力变化明显大于隧道出口的压力变化,在隧道口附近,三维效应非常明显,且每种车型均不同。因此,将列车和隧道耦合起来设计出合理的隧道和列车截面形状,是减小隧道空气动力学效应的有效途径。  相似文献   

3.
为研究地铁列车内空气循环状态对客室压力变化及列车开关门过程的影响,搭建了车内外压力测试系统,开展了库内静态及线路动态压力测试,针对空气温度控制内外循环、恒温空气内外循环及开关门动作等过程的客室内压力变化特点进行了试验对比研究。研究结果表明:空气降温内循环过程车内压力变化显著,快速降温过程将导致在进站开门时形成开门阻力;车门关闭过程中,由于气阻效应和新风系统的作用,车内压力升高,形成关门阻力;列车气密性和隔热性能越好,客室内温度变化过程越接近绝热过程,温度变化导致的压力变化就越显著;调控空气循环过程,限制空气制冷循环强度,能够有效抑制由此引起的车内压力变化和降低关门气阻。文章为解决因列车内空气循环过程而导致的车门开闭异常及舒适性下降提供了试验依据,并提供了有效优化方案。  相似文献   

4.
对大秦线列车管减压量偏大的重载组合列车的制动施加时间、地点、线路数据和机车数据进行了统计分析,确定环境温度升高是引起列车管压力上升的主要原因,通过理论计算的方法研究了不同条件下环境温度升高对列车管压力变化的影响,进而分析其对制动缸压力、闸瓦压力、车辆制动力、列车制动力的影响,结合试验数据分析对车钩力产生的影响,并论述纵向力增大可能带来的隐患,针对这种现象提出了解决建议。研究表明重载组合列车在环境温升较大的中午时刻或者低温季节经过长大隧道时会引起列车管压力上升,造成列车施加空气制动时减压量变大,进而导致列车制动力增强。  相似文献   

5.
列车的高速化疗运行,造成列车周围空气动力学的改变,会影响乘车舒适度,本文介绍国外高速旅客列车行驶中产生空气压力波的原因以及压力变化对车内乘客的影响。  相似文献   

6.
列车驶入隧道时会产生剧烈的压力波动,对车内人员的耳感舒适性有重要影响。在高海拔、大坡度环境下,车内外压力变化还要叠加海拔变化的影响,车内人员的耳感不适性问题将更加复杂。文章采用一维可压缩非定常不等熵流动模型黎曼变量特征线法和考虑连续换气风机工作的车内压力计算方法,分别在隧道单列车通过和中央等速交会情景下进行了车内外压力变化特征研究,并基于国内高速列车主动压力保护技术,对比了采用高静压风机和低静压风机的车内压力保护效果,最后结合UIC标准和国内民航舒适性标准限值进行了车内压力舒适性评价。研究表明,高静压风机对车内压力瞬变的抑制作用明显优于低静压风机,低静压风机车内每1 s、3 s和10 s内最大压力变化量分别高于高静压风机约100%~600%,且350 km/h速度等级列车的高静压风机对车内压力抑制作用略优于250 km/h速度等级列车。  相似文献   

7.
高速铁路隧道压力波动主要影响参数研究   总被引:2,自引:1,他引:1  
利用所研制的预测列车进入隧道时引起的列车和隧道环状空间的压力波动软件,计算了流线型列车及隧道主要参数对环状空间3s内最大压力变化的影响。结果显示所有影响因素中,速度和阻塞比对压力变化的影响最大。得出单线隧道单列列车通过时,在速度不大于250km·h-1,3s内最大压力变化与列车速度的平方成正比,但速度超过250km·h-1时,压力对速度的依赖关系有所缓和。分析认为在3s内最大压力变化随阻塞比非线性地变化。研究表明列车长度对头部压力变化的影响较小,但对尾部压力变化有明显影响;隧道内会车压力波在3s内变化量随会车位置不同有明显区别,两列车在隧道长三分之一处交会最为不利。  相似文献   

8.
为研究市域列车通过隧道的气动载荷变化规律,利用三维、瞬态可压缩的标准k-ε湍流模型计算了4节编组市域列车通过3种不同断面隧道时的气动效应,并分析了车体表面、隧道壁面及紧急疏散平台的压力时程变化。结果表明:(1)隧道A情况下的列车表面压力峰值为2 600 Pa,隧道壁面压力峰峰值为4 100 Pa;隧道B情况下的列车表面压力峰峰值为2 000 Pa,隧道壁面压力峰峰值为3 300 Pa;隧道C情况下的列车表面压力峰峰值为3 700 Pa,隧道壁面压力峰峰值为5 500 Pa; 3种不同断面各隧道条件下,紧急疏散平台处压力变化规律与隧道壁面压力变化规律基本一致。由此可见,隧道阻塞比越大,隧道内压力波变化越剧烈。(2)隧道A测点x(线路纵向)方向气流速度变化峰值为17 m/s,隧道B测点x方向气流速度变化峰值为32 m/s,隧道C内疏散平台测点x方向上的气流速度变化幅值最大,约为40 m/s,隧道A、B、C内疏散平台测点在y(线路横向)和z(线路竖向)方向上的速度变化不大。  相似文献   

9.
以某时速为120 km速度等级的地铁列车为研究对象,基于密封指数及静态和动态密封指数的定义,采用仿真分析和实验室试验的方法并结合相关标准指标要求,对整车进行气密性设计与试制;通过现场空气动力学试验,对整车全线运行及通过短桥隧和人防门时的车内外压力变化情况及车内压力舒适度和动态密封指数进行分析。结果表明:车体和车门对整车静态气密性影响比例之和为90%以上,设计试制时须重点关注车体和车门的密封性能;列车全线运行时压力变化剧烈位置为短桥隧和人防门2处变截面位置,列车通过时头车车内的3 s内压力变化幅值较车外减小43%~67%,列车具有良好的气密性;列车全线运行时车内压力舒适度满足行业相关标准要求,但列车通过人防门时动态密封指数不满足行业相关标准要求,这与该处人防门设计的合理性和相关标准对地铁列车动态密封指数要求的合理性有很大的关系。  相似文献   

10.
万吨重载列车制动系统初充气性能仿真研究   总被引:2,自引:0,他引:2  
以万吨重载列车空气制动系统的充气特性作为研究对象,研究副风缸在列车充气作用时的压力变化情况。应用CFD理论,建立了重载列车空气管系的二维模型,对三通阀进行了合理的简化和等效计算后,给出了一套可完整求解货物列车空气制动系统充气特性的算法和程序,将计算结果与有关试验数据进行了对比分析,并对1万t和2万t列车在不同编组形式下末车的副风缸初充气压力变化情况进行了计算分析。  相似文献   

11.
高速列车通过隧道时隧道内压力变化的试验研究   总被引:2,自引:0,他引:2  
通过以空气为流体的高速列车模型试验,研究高速列车通过隧道时产生的压力变化.试验结果表明了隧道内产生的压力变化与列车速度、阻塞比之间的关系.  相似文献   

12.
答:列车制动系统由控制系统和基础制动系统组成。传统的制动系统由司机控制制动管的压力变化来控制各车辆的制动缸压力;其基础制动系统则接受上述的制动缸压力,通过杠杆比率的放大,实施闸瓦与车轮踏面的磨擦制动,将列车的动能转换为热能达到列车制动的目的。其特点是:  相似文献   

13.
通过对我国某型地铁列车进行隧道空气动力学实车线路试验,得到地铁列车实际运行过程中车内、外压力变化规律。试验结果表明:该型地铁列车车内压力变化满足我国地铁设计规范舒适度评价标准及美国地铁人体舒适度评价标准。地铁列车运行过程中,最长隧道区间的车内、外压力变化幅值明显大于其它隧道;列车以不同速度和模式运行中,车内1.0 s、1.7 s、3.0 s时的压力变化幅值和车外各测点压力变化幅值均不相同,车体表面测点压力变化由车头至车尾方向呈逐渐减小的趋势。  相似文献   

14.
研究目的:高速列车通过铁路挡风墙及在墙内交会时,挡风墙和列车的耦合空气动力响应会影响列车的运行安全与舒适性。本文基于高速列车气动性能动模型试验,对列车单车、交会通过挡风墙时的耦合空气动力响应进行测试与分析,以期得出挡风墙模型表面和列车车体表面压力波值及其变化传播规律。研究结论:(1)单车运行时,挡风墙内、外侧测点压力波最大值、最小值和幅值随测点水平位置变化不大;而交会运行时,挡风墙内、外侧测点压力波最大值、最小值和幅值的绝对值在挡风墙中间交会处最大;(2)就挡风墙内、外侧表面压力变化而言,外侧测点压力波幅值远小于对称的内侧测点,对内、外侧测点,其压力变化幅值近似与列车车速的平方呈正比关系;(3)挡风墙内侧测点压力值随高度增加而减小,外侧测点压力值随高度增大而增加,建议挡风墙结构设计计算时主要考虑其内侧测点压力变化影响;(4)本研究结论可为高速铁路列车安全及防风工程的计算和设计提供基础。  相似文献   

15.
针对高速地铁列车通过隧道区间风井扩大段时引起的乘客耳感不适,依托某带隧道风井的地铁线路区间及设计时速120 km的8车编组地铁列车,以ATO运行模式开展实车试验;在确保试验可重复性的基础上,探究列车站间运行时各车厢内外压力变化规律,分析区间风井扩大段引起车内外压力突变的原因。结果表明:车头和车尾先后高速通过风井段时,相当于经历了隧道断面面积先扩大再缩小的变化过程,会形成类似于车头和车尾驶出和进入隧道洞口的物理现象,车头、车尾通过区间风井扩大段会导致车外压力的上升、下降,此时产生的压力突变是导致耳感不适的主要原因;尾车至头车的车外压力正峰值和负峰值全程呈上升趋势,头车和尾车压力变化峰峰值接近,分别为1 617和1 723 Pa,5车压力变化峰峰值最小,为964 Pa;列车通过区间风井扩大段时,车内压力变化幅值受运行速度的影响较大,速度为113 km·h-1时,任意3和1 s内的车内压力变化幅值均超过相应标准中的耳感舒适性要求。  相似文献   

16.
采用数值计算的方法,并在风洞试验验证其准确性的基础上,研究在不同横风风速和风向角条件下,列车车身周围列车风的压力分布和风速变化。结果表明:在横风条件下,近地表区域列车风的压力峰峰值和风速极值均大于较高空间处的;相对于迎风侧而言,背风侧列车风的压力峰峰值和风速极值更大;随着横风风速的增加,同一位置处列车风的压力峰峰值变化更大,不同位置处列车风的风速极值呈现逐渐上升的趋势;风向角为45°时近地表区域和较高空间处列车风的压力峰峰值达到最大,在风向角从45°增至180°的过程中,列车风的压力峰峰值呈现下降的趋势;8+8编组时,列车风随环境风场的变化和头车附近壁面的压力分布状况与2+2编组时有相近的特征。  相似文献   

17.
采用数值模拟方法,对有无竖井条件下列车高速通过隧道时车体压力的变化过程进行模拟,研究竖井对车体压力的作用机理,基于车体压力变化幅值对竖井面积、数量和列车速度等因素进行分析.结果表明,设置竖井后隧道内的压力波及其传播体系以竖井为界分为前后2个不同的阶段,列车在不同阶段内行驶时车体压力独立地遵循各自的变化规律.减小竖井面积和增加怪井数量均有助于降低车体压力的变化幅度,当竖井面积小于0.5倍隧道有效断面面积时,竖井可有效降低车体压力的变化幅度;增加竖井数量虽然能降低车体压力,但会增多车体压力的变化次数;竖井对车头的降压效果最为显著,其次为车中和车尾;对于不同的列车速度,竖井对车体都有一定的降压作用,且竖井的降压效果随着列车速度的提高而增强.  相似文献   

18.
计算高速列车车内压力的热力学模型   总被引:2,自引:0,他引:2  
张光鹏  雷波 《铁道学报》2006,28(1):35-38
运用热力学基础知识,建立了一种计算高速列车通过隧道时车内压力变化的热力学模型,它采用当量漏气面积表示车辆气密性,具有物理意义明确的特点。在相同的计算条件下,将其与现有能够计算车内压力的2种模型——经验模型和流动模型进行了车内压力计算的对比分析,结果表明热力学模型用于高速列车车内压力计算是可行的。  相似文献   

19.
为了避免高速列车空调系统运行引起的压力变化对列车其他系统及乘客的乘坐舒适度造成影响,对如何控制空调系统运行时的车内压力进行了研究,并有效解决了高速列车空调系统运行压力引起的侧门关闭故障。  相似文献   

20.
孙玉昆  陈垒 《铁道车辆》2023,(4):33-37+72
针对“复兴号”动车组在经过部分隧道多、海拔落差大的路线时出现乘客耳鸣及车体变形等问题,对西成线在线运营的“复兴号”动车组进行了实车跟踪测试,测试结果与理论分析结果一致,即当高速列车连续穿越海拔变化的隧道群时,为了保证车内压力处于相对稳定状态,压力保护阀长时间处于关闭状态。当列车驶出隧道后,因海拔高度和连续隧道的综合影响,车厢内外压差较大,若此时压力保护阀强制开启,列车内外压力在短时间内会迅速达到平衡,从而导致车内压力变化剧烈。文章采用数据分析的方法对被动式压力保护系统的开闭阀、强制开阀逻辑进行了优化,并通过增加泄压模式来降低车内外压差。经测试,优化后的车内1 s、3 s、10 s和60 s的最大压力变化率分别降低了68%、80%、83%和59%,远低于车内压力控制标准,人体感受较好,提高了乘客的乘坐舒适性和列车的运行安全性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号