首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 504 毫秒
1.
研究目的:为对比桥上铺设不同无砟轨道时对应无缝线路受力规律,本文基于有限元方法及梁轨相互作用原理,分别建立大跨度桥上纵连板式、单元板式及双块式无砟轨道有限元模型,分析实测温度工况及制挠力耦合作用下,不同无砟轨道对应的无缝线路受力规律及桥梁理论最大温度跨度,并比较制动墩墩顶刚度、扣件阻力等参数对无缝线路受力及最大温度跨度的影响。研究结论:(1)相同桥梁温度跨度下,双块式无砟轨道钢轨附加应力最大,纵连板式无砟轨道钢轨附加应力最小,且纵连板式无砟轨道钢轨附加应力远小于铺设单元板式或双块式无砟轨道时对应钢轨附加应力;(2)采用常阻力扣件时,当制动墩墩顶刚度由1 500 k N/cm增大到8 000 k N/cm时,单元板式无砟轨道最大温度跨度由93.3 m增大到105 m,双块式无砟轨道最大温度跨度由60 m增大到75.8 m,而纵连板式无砟轨道钢轨附加应力受墩顶刚度的影响很小;(3)纵连板式无砟轨道对应桥梁最大温度跨度需同时考虑钢轨附加应力及墩顶纵向位移限值;(4)扣件阻力大小对单元板式及双块式无砟轨道钢轨附加应力影响较大,采用小阻力扣件后,两者对应最大温度跨度分别增大约1.5、2.0倍,小阻力扣件可以有效的减小单元板式及双块式无砟轨道钢轨附加应力;(5)本研究成果可为不同无砟轨道应用及对应桥梁跨度设计提供参考。  相似文献   

2.
为研究高速铁路桥上CRTSⅡ型板式无砟轨道伸缩附加作用,建立了线-板-桥-墩一体化非线性有限元空间力学模型,以某多跨连续梁桥为基本工点,计算了桥梁和轨道伸缩附加受力和变形规律,并分析了纵连底座板与桥梁间滑动层摩擦系数,以及底座板刚度折减变化对连续梁桥上CRTSⅡ型板式无砟轨道受力和变形的影响.  相似文献   

3.
基于列车—轨道—桥梁耦合动力学理论、无砟轨道与桥梁间纵向相互作用理论及无砟轨道温度场和温度效应理论,建立考虑服役期间无砟轨道钢筋与混凝土的相互作用、无砟轨道混凝土的开裂与闭合效应、无砟轨道荷载时变特性共同作用的桥上纵连板式无砟轨道疲劳寿命预测方法。以高速铁路32m多跨简支箱梁桥上无砟轨道为例,运用该方法研究组合荷载下桥上纵连板式无砟轨道的疲劳特性。结果表明:为了较准确地预测服役期间桥上纵连板式无砟轨道的疲劳特性,必须同时考虑列车荷载、温度荷载及温度梯度荷载的共同作用;桥上纵连板式无砟轨道的疲劳寿命由梁端处的轨道控制,梁端处轨道板底面混凝土和底座板顶面混凝土更易发生疲劳破坏;气候环境和无砟轨道裂缝间距对桥上纵连板式无砟轨道各部件的疲劳特性有很大影响,武汉地区无砟轨道的轨道板混凝土、底座板钢筋、底座板混凝土的疲劳寿命分别是哈尔滨地区的2.5,3.9和222.6倍,当裂缝间距由2倍扣件间距变为1倍时,无砟轨道钢筋的疲劳寿命增加10倍以上。  相似文献   

4.
客运专线桥上纵连板式无砟轨道制动附加力影响因素分析   总被引:9,自引:1,他引:8  
为了揭示各种因素对桥上纵连板式无砟轨道制动附加力的影响,为轨道和桥梁设计提供基础参数,运用空间有限梁单元理论,建立了桥上纵连板式无砟轨道线板桥墩空间一体化纵向力计算模型,并编制了相应的计算软件。运用所编制的计算软件,分析了扣件阻力、底座板与桥梁摩擦系数、道床板伸缩刚度以及底座板与桥梁固结机构对制动附加力的影响。结果表明:对16 kN/m的制动力,扣件阻力在16 kN/m及以上变化,钢轨、道床板及桥梁墩台的纵向力变化很小;增大底座板与桥梁间摩擦系数,墩台顶最大纵向力稍有增加,钢轨和道床板纵向力大幅降低;增大道床板伸缩刚度和取消底座板与桥梁间固结机构,有利于降低墩台顶最大纵向水平力。  相似文献   

5.
研究目的:高速铁路预应力桥梁会出现徐变上拱,而高速铁路对线路平顺性要求高,预应力桥梁徐变上拱引起的不平顺对高速列车-纵连板式无砟轨道-桥梁耦合系统有何影响,是工程界十分关注的问题。本文基于列车-轨道耦合动力学理论,建立考虑无砟轨道-桥梁系统各部件间接触状态非线性的高速列车-纵连板式无砟轨道-桥梁三维有限元耦合动力学模型并进行相应验证,运用所建模型,对列车在桥上纵连板式无砟轨道线路桥梁徐变上拱地段高速行驶时耦合系统的动力特性进行研究,旨在探讨其影响规律。研究结论:(1)桥梁徐变上拱对车体振动加速度影响非常显著,对桥梁振动加速度虽有影响,但不太显著;(2)桥梁徐变上拱对最大轮轨力、钢轨最大正弯矩、扣件最大拉力、轨道板和底座板纵向最大拉应力、CA砂浆最大压应力均有一定的影响,但影响规律不一,对最大轮轨力影响比较小,而对钢轨最大正弯矩、扣件最大拉力、轨道板和底座板纵向最大拉应力、CA砂浆最大压应力影响则比较大;(3)桥梁徐变上拱引起的无砟轨道-桥梁间局部脱空对高速列车-纵连板式无砟轨道-桥梁耦合系统动力特性有显著影响;(4)本研究成果可为高速铁路桥上纵连板式无砟轨道线路徐变上拱大小控制提供理论依据。  相似文献   

6.
根据桥上纵连板式无砟轨道的结构特点,基于有限元方法建立桥上纵连板式无砟轨道挠曲计算模型,计算温度荷载下的挠曲力,分析列车荷载作用长度、活载入桥方式对挠曲力的影响,研究桥上纵连板式无砟轨道在挠曲力作用下的梁轨相互作用规律。结果表明:桥梁挠曲变形所引起的钢轨纵向附加力较小,其中简支梁桥上钢轨挠曲附加力不超过21.6 kN,连续梁桥上钢轨挠曲附加力不超过24.0 kN;在进行部件的受力检算时,应根据具体的部件选用伸缩力或挠曲力;与桥上有砟轨道及单元板式无砟轨道有较大不同的是,还需要根据不同的检算部件寻求最不利的挠曲力列车荷载加载方式;建议采用活动端迎车进行加载。  相似文献   

7.
研究目的:温度荷载下梁轨耦合作用规律是桥上铺设CRTSⅡ型板式无砟轨道的基础,本文针对简支梁和连续梁,建立多钢轨、整桥系统的计算模型,对其梁轨耦合作用规律及其影响因素进行较为全面、细致的分析,以期为桥上纵连板式无砟轨道无缝线路的设计、施工及后期养护维修提供参考。研究结论:(1)纵连板的钢轨伸缩力与梁跨布置没有明显的映射关系,近似呈对称分布,这主要是由轨道板的位移分布特点所决定的;(2)底座板是梁轨系统中的关键部件,其伸缩影响着系统其他部件的受力与变形,端刺为底座板的锚固装置,其刚度直接决定着底座板的伸缩位移大小;(3)受梁板相对位移的影响,滑动层、"两布"隔离层、端刺产生的纵向力均会引起底座板纵向力的变化,变化幅度近似为其摩阻力或纵向力;(4)降温工况下,钢轨、轨道板、底座板三层纵连结构受桥梁伸缩的影响不大,但在剪力齿槽处波动较大;(5)滑动层摩擦系数是轨道结构中极其重要而又难以监控的参数;增大CA砂浆粘结力对轨道结构受力有利,建议严控施工质量;(6)该研究结论对纵连板式无砟轨道设计优化理论和工程实践具有一定的指导意义。  相似文献   

8.
建立一种桥上CRTSⅡ型板式无砟轨道纵向力学模型,取消部分区段的扣件纵向阻力以模拟维护作业对轨道和桥梁受力的影响。利用所建力学模型对一座80 m+128 m+80 m大跨度连续梁桥上CRTSⅡ型板式无砟轨道松开扣件进行线路维护作业的纵向力变化进行分析,结果发现:钢轨纵向力最大变化值为64.82 k N,相当于轨温变化3.38℃产生的温度力;底座板纵向力最大变化值为52.75 k N;剪力齿槽和桥梁固定支座的纵向力变化均在20 k N以下。松开扣件维护作业对钢轨、底座板、剪力齿槽和固定支座的强度影响可承受,按现行《高速铁路无砟轨道线路维修规则》对大跨度连续梁桥上CRTSⅡ型板式无砟轨道松开扣件进行维护作业是可行的。  相似文献   

9.
桥上纵连板式无砟轨道相关技术问题分析   总被引:4,自引:0,他引:4  
研究目的:桥上纵连板式无砟轨道的轨道和桥梁结构通过锚固限位装置耦合在一起,在温度力、制动力等荷载共同作用下,桥上纵连板式无砟轨道系统的受力变得相对复杂。通过本文的研究,分析相关技术问题,并在结构设计时加以关注。研究结论:直线地段桥梁墩身检算时可不考虑底座板内的温度力;底座板检算时要考虑底座板刚度的折减,并将温度力作为主力、制动力作为附加力进行检算,且应考虑底座板具有较高刚度的工况;连续通过两桥之间的短路基时,轨道系统的温度力为内力(自平衡),摩擦板上承受的力要比设置端刺时小;模态分析发现,桥梁和轨道结构的反相位振动成为轨道拍打梁面的重要原因之一。  相似文献   

10.
桥上纵连板式无砟轨道无缝线路力学性能分析   总被引:1,自引:0,他引:1  
基于有限元法,考虑钢轨、无砟道床、滑动层、桥梁等结构的相互作用关系,建立桥上纵连板式无砟轨道无缝线路纵-横-垂向空间耦合模型,进行滑动层摩擦系数、扣件纵向阻力、无砟道床伸缩刚度等对桥上纵连板式无砟轨道无缝线路的受力和变形影响规律的研究.结果表明:滑动层减弱了桥梁、轨道间的相互作用,当滑动层摩擦系数为0.1~0.5时,无缝线路伸缩力仅为22.821~55.361 kN,远小于一般桥上无缝线路结构;滑动层摩擦系数越小越有利于轨道和桥梁结构的安全使用;底座板/轨道板的伸缩刚度减小会明显增大部分轨道和桥梁的受力,伸缩刚度折减至10%时,伸缩力会增大近6倍,因此应该注意控制底座板和轨道板的开裂现象;扣件的纵向阻力变化对轨道和桥梁结构的受力和变形几乎没有影响,但为了防止钢轨爬行或断缝值超限,扣件阻力不宜太小.  相似文献   

11.
研究目的:为得到设有超高的无砟轨道温度场分布的时变规律,建立无砟轨道横竖向温度梯度荷载模式,在某客运专线圆曲线段上CRTSⅡ型纵连板式无砟轨道中埋设温度传感器对其温度场进行了长期连续观测。研究结论:(1)无砟轨道昼夜温度变化较大,表面最高日温差可达24.7℃,平均日温差达19.0℃;(2)随着距表面深度的增加,无砟轨道温度变化幅值逐渐减小,峰值出现时间不断滞后;(3)底座板底面最大日温差为6.1℃,平均为5.0℃;(4)纵连板式无砟轨道的竖向温度梯度可拟合为指数曲线,与铁路桥梁设计规范规定的箱梁竖向温度梯度分布在形状上较为符合;(5)纵连板式无砟轨道横向温度梯度分为轨道板和底座板两类,轨道板横向温度梯度可采用二次函数拟合回归,底座板横向梯度可采用线性分段函数拟合;(6)研究成果可为我国中部地区高速铁路设计温度荷载模式提供指导作用。  相似文献   

12.
研究目的:目前CRTSⅡ型板式无砟轨道在我国已建成的高铁线路中铺设较多,铺设CRTSⅡ型板式无砟轨道的线路,桥上岔区一般铺设纵连道岔,为了研究桥梁和纵连道岔之间的相互作用规律,文章以京沪高铁天津南站桥上纵连岔区为例,建立岔-桥-板-墩一体化计算模型,分析岔区轨道在底座刚度、桥梁与轨道间摩擦系数以及列车制动位置对无砟轨道各部分受力及道岔的影响。研究结论:通过分析得出以下结论:(1)温度力作用下,底座刚度增加时,墩顶纵向力、底座轴力及道岔可动部分位移增大;底座与桥梁间摩擦系数增大时,底座轴力及道岔可动部分变形减小;(2)制动力作用下,底座刚度和摩擦系数增加时,底座轴力增加,墩顶纵向力及道岔可动部分位移减小;(3)本文对岔桥相互作用规律的研究结论,对桥上纵连岔区无砟轨道结构工程设计具有一定的参考意义。  相似文献   

13.
考虑轨道与桥梁相互作用特点,建立桥上CRTSⅡ型板式无砟轨道空间力学模型,分析桥梁温度跨度对纵连底座板制动力和伸缩力的影响,根据不同桥梁温度跨度下的纵向力,按极限状态法对纵连底座板进行配筋设计。结果表明:当桥梁温度跨度小于482 m时,纵连底座板最大制动力随着温度跨度增加迅速增大,温度跨度超过482 m后纵连底座板的最大制动力趋于稳定;纵连底座板最大伸缩力随着桥梁温度跨度线性增大;纵连底座板配筋率增幅小于桥梁温度跨度的增幅。  相似文献   

14.
桥上CRTSⅡ型板式无砟轨道纵连底座板受力计算模型比较   总被引:2,自引:2,他引:0  
桥上CRTSⅡ型板式无砟轨道设计时采用"线-板-桥-墩"空间一体化模型计算纵向力,模型中轨道板与纵连底座板简化为一层复合结构。建立一种桥上CRTSⅡ型板式无砟轨道"线-板-板-桥-墩"空间一体化模型,将轨道板与纵连底座板分别模拟,并通过砂浆阻力相互作用,模型采用有限单元法求解。采用两种模型对一座大跨连续梁桥上纵连底座板的制动力和伸缩力进行对比计算。结果表明,纵连底座板的制动力和伸缩力采用"线-板-板-桥-墩"空间一体化模型的计算结果更小,纵连底座板配筋设计采用"线-板-桥-墩"空间一体化模型具有更高的可靠性。  相似文献   

15.
为掌握CRTSⅢ型板式无砟轨道结构的温度场、受力和变形规律,在郑徐高铁跨京杭大运河徐州特大桥的CRTSⅢ型板式无砟轨道结构开展监测服役状态监测的基础上,对监测数据进行了统计分析,研究表明:(1)轨道板板中温度高于自密实混凝土层和底座板;(2)轨道板上半部分温度梯度较大,下半部分温度梯度较小;(3)连续梁跨中地段轨道板板端翘曲位移高于板中翘曲位移,板端最高翘曲位移为1.9mm。连续梁梁端地段轨道板板端翘曲位移与板中翘曲位移接近;(4)随着大气温度的升高,桥梁梁缝的相对位移值逐渐减小;(5)轨道板压应力、拉应力大小变化随着温度的升高和降低而相应发生变化。  相似文献   

16.
建立了适用于桥上CRTSⅡ型板式无砟轨道的无缝线路—无砟轨道—桥梁纵向相互作用力学模型,分析连续松开扣件进行改道、垫板作业对32 m简支梁桥上CRTSⅡ型板式无砟轨道纵向力的影响。结果表明:连续松开40个扣件,钢轨纵向力降低了24.56 kN,相当于轨温变化1.3℃产生的温度力;纵连底座板纵向力增加了26.59 kN,增加值远小于其设计检算时所采用的纵向力;剪力齿槽和桥梁固定支座的纵向力变化比钢轨和底座板小,松开扣件后剪力齿槽和桥梁固定支座的纵向力变化均10 kN,这一变化与其承载能力相比几乎可以忽略。可见,按现行《高速铁路无砟轨道线路维修规则(试行)》连续松开扣件进行线路维护作业对无砟轨道和桥梁的强度影响不大。  相似文献   

17.
考虑纵连板式无砟道岔的结构特点,基于无缝道岔、无砟轨道和桥梁间的相互作用关系,建立了道岔—轨道板—底座板—桥梁—墩台一体化有限元计算模型。以某高架桥上左咽喉为例,分析了混凝土结构开裂对连续梁桥上纵连板式无缝道岔群受力与变形的影响。结果表明,混凝土开裂及整个轨道构件的大部分结构的受力降低,而且,裂缝会造成结构耐久性差,所以,应控制裂缝,以保证耐久性和合理受力。同时,在设计时,应根据实际配筋率来计算弹性模量折减系数,使设计更合理。  相似文献   

18.
研究目的:大跨度混凝土桥上铺设无砟轨道和无缝线路是我国客运专线建设的关键技术之一,对桥梁和轨道工程都是一个严峻考验。对于长大混凝土桥上无缝线路,是否设置钢轨伸缩调节器是困扰长大混凝土桥上无缝线路设计的难题。本文对我国大跨度桥梁无砟轨道无缝线路设计进行研究分析。研究结论:通过对我国大跨度桥梁无砟轨道无缝线路设计研究分析和既有长大混凝土桥梁工点无砟轨道无缝线路运营情况现场调研发现;(1)铺设无砟轨道的大跨度混凝土桥梁温度跨度超过一定范围将引起轨道结构的病害;(2)通过在桥上采用小阻力扣件即减小桥上扣件的纵向阻力,可以降低钢轨最大纵向附加力及轨道结构的受力;(3)随着桥梁温差取值的增大,钢轨与桥墩受力及轨道和桥梁结构的变形都有明显增大;(4)必须加大大跨度桥上无缝线路监测的力度,加强无缝线路设计参数的试验研究。  相似文献   

19.
桥上CRTSⅡ型纵连板式无砟轨道在运营过程中由于温度跨度和温度力较大,钢轨受力大而存在断轨危险。利用有限元软件建立了线-板-桥-墩一体化分析模型,研究断轨力作用下梁轨相互作用的影响。结果表明:非折断钢轨、常阻力扣件、轨下基础对折断钢轨的收缩具有约束作用,使得相同位置处同线及邻线非折断钢轨受到较大的附加拉力,同时断轨力对钢轨强度及断缝值影响较小;检算底座板强度及端刺位移时,根据经验将轨道板、底座板的纵向伸缩刚度折减系数取0.3;对不同部件进行强度检算时应首先确定其最不利断轨位置。  相似文献   

20.
为探明高速铁路长联大跨度连续梁桥上CRTSII型板式无砟轨道制挠工况下受力特性,选取某高铁跨径(60+3×100+60)m的连续梁桥为工程实例,建立考虑梁轨各构件的空间有限元模型,计算分析单侧制挠工况下各层轨道结构纵向附加力分布规律;分析轨道关键结构参数变化对其纵向附加力影响规律,研究结果表明:在单侧制挠工况下,钢轨纵向附加力最大值出现位置随着加载区域的变化而变化,最大附加拉力及附加压力分别出现在加载区域后端点、前端点;轨道板和底座板纵向附加力分布趋势一致;3层轨道结构中,轨道板在制挠工况下纵向附加力最大;连续梁固定支座右侧300 m范围加载制动力为轨道结构相对最不利工况;道床板伸缩刚度以及滑动层摩擦因数对轨道结构附加力影响较大;CA砂浆层对轨道结构附加力影响较小;建议增大大跨连续梁两端无砟轨道结构强度,改进CRTSII无砟轨道CA砂浆层的设置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号