首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 656 毫秒
1.
为研究沪宁城际高速铁路引起的周围环境的振动特性和传播规律,进行了现场试验和数值分析。从时域和频域两方面对测试数据进行处理分析,结论如下:实测的直线段路基结构,钢轨竖向振动加速度大于横向振动加速度,振动以竖向为主;振动传播过程中,高频成分迅速衰减,低频成分衰减较慢;地面振动频率主要集中在70Hz以内的频段;地面振动频谱曲线在34Hz处出现最大值,反映了车辆的轴距作用;振动随传播距离单调衰减,传播初期衰减较快,传播至土体后衰减速度放慢。建立了数值分析模型,研究列车作用下地面的振动响应,并与实测结果进行比较,验证了模型的合理性,分析车速对振动的影响,结果表明:路基结构的振动加速度在车速为350km/h时达到最大,地面土体振动加速度在车速为250km/h时达到最大;振动在距路基坡脚20m至更远处的传播中,衰减速度非常缓慢。  相似文献   

2.
为了研究高速铁路高架桥线路直线和曲线段的环境振动衰减规律及其频谱特性,以广深港高铁某高架区段为研究对象,测试300 km/h速度下直线段和曲线段的振动响应,通过引入铅锤向Z振级进行综合评价,分别对直线和曲线段的桥墩和桥梁跨中断面的振动特性及衰减规律进行对比分析,结果表明:(1)曲线段的振动源强大于直线段的振动源强,桥墩处大6 dB,跨中处大3 dB;(2)当距中心距离较近时,对环境振动影响较大的主要频率为25~80 Hz的高频部分,当距离较远时,环境振动的优势频率在10 Hz左右;(3)在45 m处,直线桥墩断面、曲线跨中和桥墩断面的主频振级相比30 m处都有所增大,且主频都为低频。  相似文献   

3.
以广深港(广州—深圳—香港)高速铁路光明城高架段以及武广(武汉—广州)高速铁路金沙洲隧道段为工程背景,开展高速铁路振源及环境振动现场测试,研究其振源特点和环境振动衰减规律。试验结果表明:高速列车诱发高架曲线段振源振动强度明显高于直线段,桥面Z振级远高于隧道壁Z振级;高架段断面环境振动Z振级高于隧道段断面最大达33 dB;环境振动Z振级随距轨道中心线距离增加而逐渐减小,但距离15 m以后,高架段和隧道段衰减规律略有不同;环境振动主频集中在20~80 Hz,随着距轨道中心线距离增加,环境振动高频成分衰减速度大于低频成分;对于隧道而言,其埋深越大,环境振动主频越低。研究成果对高速铁路、市域快速轨道交通设计具有参考价值。  相似文献   

4.
为研究高速铁路路堑在高速列车荷载下的地面垂向振动随距离传播规律,对宝兰高铁路堑段地面垂向振动进行现场试验,对现场试验的数据从时域和频域两个方面进行分析揭示地面垂向振动加速度响应特征。结果表明,路堑垂向振动加速度在距离线路中心线12.5~40 m总体呈衰减趋势,靠近线路中心线处12.5~20 m处垂向振动加速度衰减较快,较远处20~40 m处衰减速度较慢。地面垂向振动加速度在各测点处由60 Hz及100 Hz附近的频率成分主导,随着距离的增大,110 Hz左右的高频成分衰减很快,到了距线路中心线20~40 m,振动加速度在60 Hz左右的频率成分占优。依据现场工况,建立了列车-轨道-路堑-地基数值分析模型,并通过数值试验的方法,设置不同的场地速度特性,分析不同场地条件对路堑振动响应的影响。数值分析表明,场地速度特性(覆盖层与下卧层模量比、覆盖层厚度)是影响地面振动剧烈程度的重要因素,地基覆盖层与下卧层模量比越大,地面振动越强烈,模量比一定,覆盖层厚度越小,地面振动越大。  相似文献   

5.
本文对沪宁城际高速铁路列车运行引起的周围环境振动特性和振动传播规律,以及振动对京沪铁路地基沉降的影响进行研究。通过建立数值模型,分析桩网结构地基加固方式和土质条件对振动的影响,并对振动引起的京沪铁路地基土体累积变形进行了预测。结果表明:采用桩网结构进行地基加固后,地面振动减弱,且距离地基加固区越近,减振效果越明显,距线路中心线10m处地面振动加速度峰值下降约33.8%;土质条件对振动传播有较明显的影响,软土条件下,振动衰减较快,近场地面处的振动较大,应重点关注振动对行车安全的影响;较硬土质条件下,振动衰减较慢,应重点关注振动对周围环境的影响;当地基表层和底层土体硬度较大,且中间夹有软土层时,振动衰减速度缓慢,应注意振动的影响范围。两线路基坡脚间距为20m时,在沪宁城际铁路当前轨道平顺性和平顺性恶化条件下,列车运行导致京沪铁路地基土体累积变形量分别增加3.44%和7.07%;坡脚间距为5m时,列车运行导致京沪铁路地基土体累积变形量增加18.36%,这反映出轨道平顺性和线间距(沪宁城际与京沪铁路间距离)对列车荷载循环作用下的地基土体累积变形影响较小。  相似文献   

6.
在地铁区间为小半径曲线、地面无干扰振源并可以布置高密度测点的珍贵测试条件下,采用高灵敏度数据采集与分析系统,对北京地铁某曲线段进行地面振动测试。根据测试数据,研究地铁列车通过曲线段时引起地面振动加速度的时域和频域内传播规律。结果表明:在距离隧道中心线100m范围之内,地铁运营引起地面振动加速度的时程峰值主要在10-2 m·s-2量级,远大于背景振动下的10-4 m·s-2量级;在距离隧道中心线50m范围之内,水平振动强度是竖向振动强度的2~4倍,建议在涉及曲线段地铁的环评中应同时考虑竖向振动和水平振动的影响;水平振动加速度的主要频率成分为30~120Hz,建议在关于曲线段地铁的试验、测试和模拟中应选取较宽的频率分析范围;地面振动加速度频谱幅值随着与隧道中心线间距离的增加而呈波动性衰减。  相似文献   

7.
基于高速列车动荷载激励引起的无砟轨道-路基-黄土地基体系的地面振动问题,对宝兰客专DK993+110处路堤区段地面振动进行试验研究和数值分析。对试验数据从时域和频域2个方面进行分析,研究不同车型的动荷载引起地面垂向振动加速度在黄土地基中的衰减规律,研究结果表明;在距离线路中心线10~24m衰减较快,随着距离增大,距离线路中心线24~42m衰减速度趋于平缓,且在30~42m处各型车引起地面振动均出现了振动反弹增大现象。建立车辆-轨道-地基系统模型,研究列车动荷载作用下的地面响应,发现与实测结果吻合良好,验证模型的合理性与计算的正确性,依据不同场地速度结构,通过改变地基介质模量比和覆盖层厚度的方式,分析地基介质模量比和覆盖层厚度对振动反弹增大的影响。分析车速对地面振动的影响,发现地面振动随车速增大呈增大趋势,且不同车速列车引起振动反弹区域也有一定差异。按《城市区域环境振动标准》评价该处地面振动Z振级,回归分析得出各型车引起Z振级符合对数衰减规律,但在振动反弹区30~42m处拟合效果较差,表明拟合公式适用范围应当限定在10~30 m之间。  相似文献   

8.
高速铁路列车运行噪声特性研究   总被引:3,自引:0,他引:3  
在对我国高速铁路噪声实测的基础上,分析了我国高速铁路噪声的特性。动车组高速运行时,在桥梁区段峰值均出现在低频段(f=31.5~63Hz);路基区段的噪声频谱呈宽频特性,在低频段(f=31.5—63Hz)和中高频段(f=500—8000Hz)声能量均较为集中。高速铁路列车辐射噪声随速度的关系式与国外辐射噪声随速度的关系基本一致,当高速动车组运行速度大于300km/h后,轮轨噪声、空气动力噪声和集电系统噪声成为主要声源。高速列车辐射噪声几何衰减基本遵守距离加倍,声级衰减3—4dB(A)的规律。  相似文献   

9.
以苏州某盾构隧道下穿高速铁路为背景,采取数值计算、理论分析并结合工程实测结果,分析论证了采取桩板结构和路基注浆联合加固方法,并对轨面状态监测、监护方法进行分析.结果表明:采用联合加固方法可以有效减小盾构穿越高速铁路路基引起的沉降,盾构穿越后实测最大沉降量为0.7mm,与数值计算结果相近,能确保高铁运营安全.  相似文献   

10.
采用4因素3水平正交设计的试验方法,基于解析的车轨耦合模型的动力学方法计算列车荷载,并建立三维动力有限元数值模型,讨论了不同影响因素(轨面埋深、扣件型式、行车速度、隧道型式)对地表振动影响的显著性程度,并分析地表响应特性及振动传播规律。结果表明:垂向振动是主要动力响应,且存在着传播较远的长周期含量,是低频振动的重要贡献;正交试验参数影响的显著性程度上,轨面埋深和扣件型式最显著,其次为行车速度和隧道型式,因此应在埋深因素影响阈值范围内尽量选择深埋,并选择合理的扣件以减少振动;地表振动随距离的增加逐渐衰减,30 Hz以上的频率分量振动衰减梯度较高,反映出土层的阻尼和滤波作用,衰减曲线并非单调递减,有一定起伏。  相似文献   

11.
以大西客运专线为研究背景,基于动力有限元数值模拟和正交试验设计,研究了地下水位差异和不同地基条件下跨地裂缝带高铁路基的动力响应及CFG桩对地基加固效果的影响,结果表明:路基动应力和加速度响应在地裂缝带处出现较大波动,路堤中动应力沿深度方向衰减近50%,加速度衰减近70%;上、下盘地下水位差导致地基动应力和加速度幅值出现明显差异;CFG桩降低了路堤加速度和路基下部动应力,且动应力降低幅度要大于加速度;对于动应力,桩间距的影响最大,桩长次之,桩径最小;对于加速度,桩间距的影响最大,桩径次之,桩长最小;地基优化加固方案为:上盘桩间距1. 2 m,桩长8. 0 m,桩径0. 3 m;下盘桩间距1. 2 m,桩长16 m,桩径0. 6 m。研究结果可为跨地裂缝带高铁路基设计提供参考。  相似文献   

12.
高速铁路运营速度快、轨道平顺性要求高;对于临近运营高铁路基的基坑开挖,尤其在软土地区,合理的基坑防护可以有效降低基坑开挖对高速铁路路基的影响,具有重要的现实意义。结合某城市工程实际,研究某高速铁路附近锚桩防护方案基坑开挖对高速铁路路基的影响。分别采用ABAQUD软件进行数值模拟和对各施工阶段进行现场监测,对比分析锚桩防护方案基坑开挖引起的高速铁路的附加沉降量与横向水平位移。结果表明,高速铁路的附加沉降量与横向水平位移符合规范要求,锚桩防护方案切实可行,数值模拟结果与实测数据对应较好,可以较好的反映高速铁路的位移情况。  相似文献   

13.
列车对周围地面及建筑物振动影响的试验研究   总被引:29,自引:0,他引:29  
夏禾  张楠  曹艳梅 《铁道学报》2004,26(4):93-98
通过铁路桥梁和铁路线路附近的两次现场试验,研究列车对周围地面和邻近建筑物的振动影响。实验结果表明,无论是作为桥墩的点振源,还是作为线路的线振源,铁路附近地面环境和建筑物地板的振动均随列车速度的提高而增大,随距线路的距离增加而减小,但在距线路一定的距离存在着一个振动放大区。对于多层建筑物,较高楼层的振动大,轴重大的列车引起的振动较大;实测铁路附近的楼房地板振动很大,已经超过了我国环境振动控制标准的规定。  相似文献   

14.
王东 《铁道建筑》2020,(3):63-66,72
采用敏感度分析与数值模拟相结合的方法,对影响高速列车引起地面振动的土体参数敏感度进行分析及参数反演。以宝兰客运专线榆中站附近一段路堤的地面垂向振动现场试验为依托,建立车辆-轨道-路基-地基数值模型与神经网络。以土体参数样本集为输入源,各测点地面垂向振动加速度有效值作为输出,基于敏感度理论计算各测点处的参数敏感度。结果表明:影响地面振动的土体参数敏感度顺序为弹性模量>阻尼系数>泊松比>密度>内摩擦角>黏聚力;阻尼系数敏感度随距中心线距离增大呈上升趋势,其余参数随距离增大变化不大;基于敏感度分析结果,选取相关参数作为待反演参数,将现场实测的各测点垂向振动加速度有效值输入神经网络,反演得出的各参数值与现场实际参数值相对误差均小于5%,在工程可接受的范围之内,证明了神经网络反演方法的可行性。  相似文献   

15.
扬州市江平东路三期工程新建双塘路隧道长距离邻近既有高速铁路施工,通过数值模拟分析了隧道施工引起的既有高速铁路路基变形,并对隧道基坑施工的安全性进行了分析。结果表明:新建隧道施工引起的高速铁路路基变形主要是沉降,水平变形小;既有高速铁路路堤稳定安全系数最小值为1.57,大于规范规定的最小值1.25;隧道基坑围护桩变形、基坑稳定性均满足相关规范要求。隧道邻近既有高速铁路施工安全性可得到保障。  相似文献   

16.
高速铁路无砟轨道路基沉降监测和研究   总被引:3,自引:0,他引:3  
研究目的:高速铁路对路基工程工后沉降控制十分严格,路基工程工后沉降主要为铁路铺轨完成后地基的残余沉降。石家庄—武汉高速铁路设计标准为时速350 km,全线无砟轨道。为研究地基加固措施的科学性,在建设过程中,选取代表性试验工点对复合地基沉降进行监测和研究。研究结论:采用桩+板结构和CFG桩复合地基联合堆载预压措施加固深厚松软土地基,施工期沉降约占最终总沉降的72%~85%,有效地控制了路基工后沉降,整个区段内纵向沉降较为均匀,符合区段路基铺设无砟轨道要求,加固措施有效可行。  相似文献   

17.
在基床内采用纵向旋喷桩加固措施是我国既有路基结构的一种新型加固方法,目前工程实践尚处于早期尝试阶段,理论研究尚未开展。论文阐述非开挖旋喷加固机理,并率先基于有限元理论建立列车-轨道-加固体路基三维动力分析模型,研究既有铁路路基加固前后基床动力特性变化。计算结果表明:(1)纵向旋喷桩可以有效控制路基面竖向位移,其中,在基床表层中加固效果明显,加固后路基面竖向动位移减少了41.2%;(2)旋喷桩加固后会引起路基面动应力增大,但由于固结体强度大幅增加,增加动应力与材料强度比值减小,所以整体路基结构受力有所改善;(3)非开挖旋喷加固法是一种有效的路基加固方法,适用于既有线路在运营条件下的快速加固。  相似文献   

18.
高铁路基运营期沉降超限治理措施及效果评估   总被引:1,自引:1,他引:0  
高铁路基运营期沉降超限治理具有"时空"限制严、治理措施难、治理费用高等特点,且可能影响线下结构耐久性和列车正常运行等问题,是高速铁路运营维护中必须考虑的重大问题。为解决高铁路基运营期沉降超限治理的问题,结合现场测试及理论分析的方法,提出集成工程治理的措施。(1)路基两侧:旋喷隔离桩加固;(2)路基坡脚处:设置应力释放孔;(3)路基底部:花管注浆加固;(4)辅助措施:更换垫块+抬高扣件。研究成果应用于沪宁(上海—南京)城际铁路工程实例中,结合治理前后的沉降测试数据和TQI值,验证了该集成治理措施控制效果较好,能够为类似工程实践提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号