首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 234 毫秒
1.
基坑开挖对运营高铁路基变形影响因素分析   总被引:2,自引:1,他引:1  
以软土地区某邻近运营高铁路基的基坑工程为例,采用数值分析方法,建立包含基坑及高铁路基在内的三维分析模型,研究降水方案、坑底加固、围护结构插入比以及基坑距路基坡脚距离这4个因素对高铁路基变形的影响。结果表明:与一次性降水相比,分层降水所造成的路基最大沉降和水平位移分别减小3.8%和5.2%;坑底加固对路基沉降的影响较小,但对路基水平位移影响相对较大;围护结构插入比存在一个最佳值,超过该值后继续增加插入比对减小路基变形作用不大;路基最大变形的峰值点出现在基坑距路基坡脚距离为10~15 m处。研究成果可为基坑支护设计和施工及邻近高铁的运营提供参考。  相似文献   

2.
研究目的:高铁旁基坑开挖日益增多,在软土地区极易导致高铁沉降,严重影响安全运营。目前软土地区高铁旁基坑支护设计及监测技术尚不成熟,设计经验及监测数据极度缺乏。本文依托软土地区某紧邻高铁的基坑实例,对其设计及监测进行研究。研究结论:(1)提出高铁侧支护应按变形控制、对支护加强的方案实施,可减小路基沉降;(2)软土地区基坑开挖后高铁沉降时间长,呈蠕变特性,每层土开挖后沉降速率先大后小,最终沉降值很大;(3)同一位置路肩、接触网立柱、铁轨沉降基本一致,基坑中部沉降速率及沉降量较大,两侧及远离基坑处沉降较小;(4)坡脚沉降比路肩、接触网立柱、铁轨沉降小;(5)周边基坑同时开挖及降水,导致两基坑交界处高铁沉降较大;(6)本基坑开挖与降水影响高铁距离约5倍基坑深度;(7)本基坑设计和监测经验可供高铁旁基坑设计、施工借鉴。  相似文献   

3.
谢俊 《铁道建筑技术》2020,(3):96-99,149
以某滨江软土地层逆作法深基坑为依托,利用有限差分软件对该基坑进行了数值仿真,结合监测数据对不同开挖深度下地连墙、内支撑轴力及基坑外土体沉降的变化规律进行了较为系统的研究。逆作法基坑地连墙的水平变形随开挖深度近似呈"弧形"分布,水平位移最大值出现的位置在基坑开挖面底部,与顺作基坑的变形规律区别较大;基坑开挖影响范围较大,距离基坑开挖深度2倍的地表也能受到基坑开挖的影响,地表监测点的沉降趋势及沉降曲线形态类似;该模拟方法及变形监测所得规律可以为类似基坑工程提供科学指导和理论依据。  相似文献   

4.
软土深基坑施工期变形具有明显的时空效应,以宁波软土地区相连深基坑为工程背景,对软土地区相连深基坑开挖的时空效应开展研究。基于基坑施工过程中地表沉降、地连墙水平位移、支撑轴力的监测数据,分析施工工序、开挖深度等因素对不同位置处基坑结构与土体的变形影响,并通过有限元软件对2基坑同时开挖的情况进行计算讨论。研究结果表明:采用2个基坑单独开挖的顺序,在一个基坑开挖时,已完成的地连墙或已封顶的车站结构将对这一侧的地表沉降和地连墙水平位移有较好的约束作用;地表沉降与地连墙水平位移在基坑长边上的值大于端头部分,且这2个变形值具有明显的深度效应,即随着开挖深度的增加,变形值增加更快;支撑轴力的变化主要受开挖土体的位置影响,越近的土体开挖,支撑轴力增加越大;若采用2基坑同时开挖的方式,控制中间部分地连墙的变形将是重点,施工安全也面临较大挑战。  相似文献   

5.
高速铁路运营速度快、轨道平顺性要求高;对于临近运营高铁路基的基坑开挖,尤其在软土地区,合理的基坑防护可以有效降低基坑开挖对高速铁路路基的影响,具有重要的现实意义。结合某城市工程实际,研究某高速铁路附近锚桩防护方案基坑开挖对高速铁路路基的影响。分别采用ABAQUD软件进行数值模拟和对各施工阶段进行现场监测,对比分析锚桩防护方案基坑开挖引起的高速铁路的附加沉降量与横向水平位移。结果表明,高速铁路的附加沉降量与横向水平位移符合规范要求,锚桩防护方案切实可行,数值模拟结果与实测数据对应较好,可以较好的反映高速铁路的位移情况。  相似文献   

6.
重点对宁波轨道交通1号线一期工程13座地下2层车站基坑的墙体最大水平位移及墙后最大地表沉降进行研究,分析基坑墙体水平位移、墙后地表沉降的变化规律以及墙后地表沉降与墙体水平位移的关系。结果表明:受宁波软土流变特性影响,基坑墙体水平位移及墙后地表沉降均较大,其中墙体水平位移平均达0.46%H,墙后地表最大沉降平均值达0.7%H;墙后地表沉降呈现为"凹槽形",地表最大沉降位于(0.5~1.0)H范围内;墙后最大地表沉降与墙体最大水平位移比值的平均值为1.71。根据数据分析,提出坑底加固、基坑开挖重视"时空效应"、尽快施作垫层封闭基坑等建议。  相似文献   

7.
以宁波某软弱地层地铁车站深基坑工程为背景,采用有限元模拟和实测数据分析相结合的方法对基坑开挖过程中地下连续墙的变形规律进行了分析。分析表明:有限元模拟计算与实测数据规律基本一致,能比较准确地反映地下连续墙的水平位移变化规律和大小;地下连续墙水平位移随基坑开挖深度的增加而增大,最大位移的位置也相应下移;基坑开挖深度相同时,无支撑暴露时间越长地下连续墙水平位移越大。  相似文献   

8.
围护体系相同的情况下,不同的基坑开挖方式对基坑围护结构及土体变形量的影响有很大差异。以某海相软土深基坑工程为依托,通过三维有限元模拟分析,对比分层开挖与阶梯式开挖所引起的围护结构侧向位移、排桩弯矩、基坑水平位移等参数。结果表明,阶梯式开挖能够有效控制其空间效应并减小基坑支护结构与土体的位移。  相似文献   

9.
研究目的:基于杭州滨江区感知谷基坑工程,结合现场施工实测数据及有限元模拟结果,对典型软土地区临近河道基坑施工对周边环境影响以及河道对基坑支护影响进行深入分析。通过对现场实测数据、有限元分析数据、基于半无限空间理论计算数据进行对比、分析,验证周边存在河道等构筑物情况下采用半无限土理论基坑计算的可行性,研究基坑受力及变形规律;确定合理基底加固措施,研究不同因素对基坑周边河堤等建(构)筑物变形的影响。研究结论:(1)本基坑位于软土地区,基坑开挖时围护结构深层水平位移曲线呈“鼓肚”状抛物线,围护桩最大水平位移发生在基坑底部4~5 m处;(2)通过数据对比可知,河道侧支护桩深层水平位移、土体沉降明显小于远离河道侧;(3)通过多软件计算结果分析可知,临近河道侧土体坡度较小且河道距离基坑大于1倍基坑深度时,采用半无限土理论计算得到的支撑轴力、基坑变形等结果依然可应用于工程设计;(4)通过总结分析,提出了增大河堤刚度可有效减小临近河道侧地表沉降、河堤变形;(5)通过对本项目设计与分析研究,可为类似软土地区临河复杂基坑工程设计及施工提供参考。  相似文献   

10.
软土地区逆作法地铁换乘车站基坑变形特性研究   总被引:3,自引:1,他引:2  
研究目的:地铁嘉善路车站为上海市轨道交通9号线二期工程与12号线工程的换乘站,为地下三层岛式车站。场地浅层以淤泥质粉质黏土和淤泥质黏土为主。本文通过监测数据,分析了该换乘站逆作法施工过程中的连续墙侧向位移特性、墙顶沉降特性、立柱隆起特性以及周围地面沉降特性,探讨了其发展的规律,与已有研究成果进行了对比,得到一些有价值的结论。研究结论:研究结果表明,软土地区地铁车站逆作法施工变形特性如下:(1)连续墙侧向位移特性呈中间大、两侧小的趋势,最大水平位移始终出现在距离开挖面上几米的位置。最大位移量和开挖深度的比值约为0.18%。(2)连续墙墙顶竖向变形均以沉降变形为主,且绝大部分沉降变形发生第二层土开挖结束以前,在这个阶段以后,墙顶竖向变形呈波动状态。(3)在基坑开挖过程中,基坑内土体以及立柱桩基均呈隆起趋势,在开挖初期隆起量较大。(4)土方开挖造成的地表沉降约为开挖深度H的0.13%。研究成果对于同类工程的设计、施工具有借鉴价值。  相似文献   

11.
依托济南某地铁车站基坑工程,建立考虑土与结构共同作用的三维数值模型,模拟支护结构与主体结构相结合的基坑施工全过程,研究基坑的围护桩侧移、坑外地表土体沉降和坑底土体回弹规律。结果表明:随着开挖深度的增加,围护桩向基坑内部运动,且最大侧移沿桩身逐渐增大,最大值为开挖深度以上1 m左右;混凝土立柱的存在会明显加大围护结构的整体刚度,进而减小围护桩的侧移;基坑外侧最大沉降发生在约为1/2基坑宽度的区域,周边土体沉降范围约为4倍支护深度;混凝土立柱能减小基坑底部土体的回弹。采用支护与主体结构结合的方式,可以减小基坑在施工过程中的变形。  相似文献   

12.
研究目的:对某大型地铁车站深基坑开挖过程中的软弱场地变形监测结果进行了统计分析,对基坑开挖引起的地面沉降、墙体水平位移和立柱桩体沉降的时空变化规律进行了整体分析,尤其是对不同基坑开挖深度对基坑变形速度的影响规律进行了总结。相关的结论和建议对城市软弱地基内地铁车站深基坑的变形监测方案设计、施工组织设计和施工安全控制等都具有一定的参考价值和指导意义。研究结论:(1)在深软场地深基坑开挖完成后地铁车站主体结构施工过程中拆撑可能造成地面的沉降比基坑开挖过程中产生的累积沉降还要大,应加强地铁主体结构施工过程中地面的沉降观测;(2)基坑侧壁水平累积位移与每次开挖土层厚度及其土层性质关系密切,随着开挖土层埋深的增大,基坑侧壁水平累积位移累积速度明显加快;(3)当基坑开挖深度有较大差异和基坑底部土层厚度分布极不均匀时,应考虑验算立柱桩的差异沉降;(4)软弱场地深基坑工程开挖引起的场地变形时空效应非常明显,随着开挖的进行,应沿纵向按限定长度逐段开挖,在每个开挖段分层、分小段开挖。  相似文献   

13.
大量新建桥梁桥墩基坑工程位于铁路路基保护范围以内,使得铁路不可避免地受到基坑开挖的影响,既有铁路的列车动载加剧这种不良影响。在基坑开挖过程中,为了确保邻近铁路的安全,以孙渡特大桥上跨丰洛铁路桥墩施工为背景,通过建立三维有限元数值模型,分析在客车和货车不同速度下邻近既有线的基坑开挖过程中路堤的动变形规律:随着基坑不断向下开挖,路基中心处的竖向动位移和水平向动位移均增大,且水平动位移增长率大于竖向动位移增长率。60 km/h客车和40 km/h货车动荷载下路基中心的竖向最大动位移分别为3.32 mm和3.42 mm,其他情况均大于3.5 mm。最后基于铁路路基动变形3.5 mm的控制标准,提出在基坑开挖过程中客车限速60 km/h和货车限速40 km/h的控制措施可行。  相似文献   

14.
在城市现代化进程中,铁路周边地块不断得到开发和利用,如离铁路较近,构筑物的基坑开挖会对铁路路基产生一定的影响。此文以距铁路较近的北京夕照寺雨水泵站基坑开挖为例,通过模拟,建立有限元模型,利用国际上通用的ABAQUS有限元软件,计算和分析雨水泵站基坑开挖和防护桩施工引起的土体扰动对铁路路基产生的沉降和位移影响。经过计算与分析表明,雨水泵站基坑开挖采用防护桩措施后,施工引起的土体扰动对路基的影响较小,采取的防护桩措施能满足铁路安全运营的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号