首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对高架桥梁结构引起的振动噪声问题,研究TMD控制箱梁结构振动的特性。为了获得精准的箱梁有限元模型,首先以铁路32 m简支箱梁桥为原型,按10:1的几何相似比设计制作简支箱梁缩尺试验模型,应用ANSYS软件建立初始动力有限元模型;对有限元模型模态分析与试验模型模态测试得到的自由模态信息进行误差分析,并采用基于灵敏度分析的模型修正技术对初始动力有限元模型弹性模量和密度进行修正,得到基准有限元模型,误差确认结果显示修正后的有限元模型更精准地反应箱梁的振动特性;进一步利用基准有限元模型,开展TMD控制简支箱梁桥振动的研究,研究结果表明TMD对于抑制桥梁竖向共振有很好的效果。  相似文献   

2.
浮置板轨道作为一种减振轨道广泛应用于城市轨道交通中,为研究其在高架线上的隔振性能,建立箱梁-浮置板轨道耦合系统三维有限元模型。利用谐响应分析的方法,分析了箱梁支座刚度、钢弹簧刚度及支撑间距等参数对箱梁结构振动的影响。结果表明:与普通轨道相比,当荷载频率达到20 Hz以上时,浮置板轨道才表现出明显的隔振性能;钢弹簧刚度的变化对高架桥上浮置板隔振性能的影响主要集中在荷载频率为9~15 Hz以内且影响程度较小。钢弹簧的支撑间距对高架桥浮置板隔振性能的影响主要集中在荷载频率为50 Hz以上,其影响程度较钢弹簧刚度变化的影响要明显;荷载频率在50 Hz以内的影响很小且仅在位移峰值处有变化。  相似文献   

3.
以城际铁路32m双线、单线混凝土简支箱梁和高速铁路32m双线混凝土简支箱梁为研究对象,采用现场试验方法,对箱梁各板件在列车作用下的中高频振动响应进行测试分析。将测试结果与其他混凝土简支箱梁和U梁的试验值比较,讨论混凝土简支箱梁各板件中高频振动的影响因素。研究表明:混凝土简支箱梁各板件的中高频振动分布在200Hz以下,最大振动速度级主要出现在31.5~80 Hz频带;峰值振动主要由车轮-轨道系统固有频率决定,同时,与轴距相关的加载频率和板件的局部振动模态将影响中高频振动响应;板件尺寸、约束条件、振动传递路径决定中高频振动响应的大小,U梁的振动响应比更高运营速度下的箱梁大;等截面简支梁各横截面位置在列车通过时段内的总速度级没有明显差异。  相似文献   

4.
基于多体动力学与有限元法,利用多体动力学软件Simpack建立箱型梁及U型梁的三维车轨桥耦合振动仿真模型,对列车过桥时箱型梁、U型梁及轨道结构竖向和横向振动进行分析,得到桥梁振动空间分布情况,进一步研究扣件、板下弹性支承与桥梁支座参数对箱型梁和轨道结构的振动规律,并给出各参数的合理取值范围。研究结果表明:列车以80 km/h的速度过桥时,箱型梁与U型梁结构振动空间分布情况差异明显,应重点关注钢轨、轨道板以及箱梁翼板与腹板的竖向振动,U型梁翼缘处横向振动不容忽视;增大扣件刚度能明显减小钢轨变形,但过大的刚度会使箱梁与轨道结构的振动加剧,建议扣件竖向刚度取值为20~50 MN/m;增大板下弹性支承刚度可明显减小轨道板的振动,但过大的刚度会加强钢轨振动,建议板下弹性支承竖向刚度取值为(1.0~1.5)×10~3 MN/m;增大支座竖向刚度在一定范围内可减小轨道板与箱梁的振动,但过大的支座刚度反而会使桥梁振动加剧,不利于减振,建议支座竖向刚度取值为(3~4)×10~3 MN/m。  相似文献   

5.
针对城市轨道交通常规减振型轨道结构在低频域(30Hz)范围内因共振放大低频振动的现象,提出一种被动式动力减振轨道结构。基于扩展定点理论和有限单元法,利用最优同调和最优阻尼条件,得到抑制浮置板轨道1阶模态振动的最优刚度和阻尼。以短型钢弹簧浮置板轨道为例,建立车辆-被动式动力减振浮置板轨道耦合动力学模型。计算结果表明:被动式动力减振浮置板可有效抑制13 Hz(短型浮置板1阶固有频率)附近的振动加速度,质量比为0.2时被动式动力减振浮置板使13Hz处振动降低12dB;被动式动力减振浮置板使弹簧支点反力在13Hz附近的峰值明显降低,有效降低传递至周围建筑物的低频振动;被动式动力减振浮置板轨道结构的质量比越大,其对1阶模态振动的减振效果越好。  相似文献   

6.
为探讨铁路混凝土箱梁箱内空腔共鸣噪声及其影响,以某客运专线32m预应力混凝土简支箱梁为研究对象,开展实桥振动与噪声试验,分析箱梁振动与噪声的时域特性及频谱特性。采用有限元法建立三维空腔声模型,分析箱内空腔声模态与腔内噪声峰值的关联性。采用边界元法分别建立两端封闭与两端开口的箱梁声学模型,验证箱内空腔共鸣噪声的来源及其影响。结果表明:在特定行车速度下,箱内噪声出现"拍"现象,显著增大箱内噪声,瞬时最大声压可达40Pa,峰值频率为75.0Hz;箱内噪声的"拍"现象来源于顶板的振动噪声,顶板的振动峰值频率与箱内空腔垂向声模态频率吻合时,箱内噪声显著增大;由于梁缝的声泄漏特性,箱内空腔共鸣噪声在梁缝处衰减较大,但其对桥梁两侧总体噪声的影响不可忽略。  相似文献   

7.
为了更好地优化CRTSⅢ型板式无砟轨道结构,建立三维有限元模型,通过谐响应分析研究了CRTSⅢ型板式无砟轨道在0~1 200 Hz内的稳态响应,计算得到了钢轨和轨道板振动能量在空间和频域上的分布及传递特性,并讨论了扣件弹性垫层刚度对轨道结构能量分布的影响。结果表明:加载频率为0~1 200 Hz时,轨道结构的振动能量在其各阶模态固有频率处达到峰值,其中,钢轨振动能量存在两个峰值,分别对应钢轨一阶挠曲变形和pin-pin振动;轨道板振动能量存在多个共振峰且主要集中在200 Hz以内,分别对应轨道板前几阶纵向弯曲振动。钢轨和轨道板振动能量大小与弹性垫层刚度紧密相关,尤其当加载频率位于钢轨一阶挠曲频率附近时,钢轨振动能量尤其是势能随弹性垫层刚度增大而明显降低,轨道板振动能量随弹性垫层刚度增大而显著升高。  相似文献   

8.
基于有限元方法与车辆—轨道耦合动力学理论,针对城市高架轨道交通引起的低频振动现象,着重分析了常用高架简支箱梁在铺设非减振型轨道、钢弹簧浮置板轨道和被动式动力减振浮置板轨道3种情况下的低频振动特性。结果表明:在0~30 Hz,非减振型轨道板因与梁体共同运动,其振动水平较钢弹簧浮置板略低,但非减振型轨道板无法有效衰减传递到桥梁结构的振动;在15~30 Hz,钢弹簧浮置板通过增大轨道板自身振动的方式降低板下结构的振动,墩顶的振动加速度级衰减量约10~20 d B,但会放大轨道在1阶固有频率(5 Hz左右)处的振动水平;插入控制1阶模态振动的被动式动力吸振器,可使浮置板及桥墩各测点在1阶固有频率处的振动大幅衰减,桥墩的振动加速度级衰减量约为10 d B,有效弥补了钢弹簧浮置板结构的不足。  相似文献   

9.
随着轨道交通快速发展,其引起的振动噪声问题日益突出。为了研究高架轨道箱梁结构振动特性,基于车桥耦合动力学分析模型,利用多体动力学与有限元法求解箱梁结构的振动响应,并从时域和频域两个角度对轨道箱梁结构的振动特性进行分析,研究发现:(1)列车以80 km/h的速度过桥,车致振动自上而下在轨道结构间传递时,扣件全频段减振效果明显,CA砂浆层的减振效果不佳。(2)箱梁桥的翼板竖向振动响应水平最大,腹板次之,顶板和底板较小,在进行箱梁振动控制研究时应重点关注翼板和腹板的振动。(3)箱梁桥不同截面位置振动的模态贡献存在差异,跨中截面以1阶竖弯振动为主,2阶竖弯振型对1/4截面振动贡献最大,3阶竖弯振型对梁端截面的振动响应贡献最大。  相似文献   

10.
高速铁路32m简支箱梁声辐射特性研究   总被引:3,自引:0,他引:3  
将列车-轨道-桥梁耦合振动理论与声辐射分析边界元法相结合,分析高速铁路32m单箱单室和单箱双室箱梁声辐射特性。结果表明:单箱单室箱梁动力响应均大于单箱双室箱梁,2种截面梁型在10~100Hz范围内振动密集,表现出结构局部振动特性,须采用板单元进行动力分析;箱梁结构噪声以低频为主,分布在小于250Hz频带内,适合采用边界元法求解;各场点声压级在梁底空间变化较小,距离每增加2m,声压级平均降低1.2dB,越靠近地面,声压级衰减越小;各场点声压级随与桥梁中心线距离的增大而减小,距离每增加9m,声压级平均降低3.7dB;距桥梁中心线25m处,各场点声压级随距地面高度增加而减小;行车速度为160~240km/h时,单箱单室箱梁比单箱双室箱梁声压级平均大14.2~4.3dB,速度越高,声压级差别越小。  相似文献   

11.
通过仿真计算分析了两种轻型浮置板轨道系统的隔振性能、不同荷载作用位置对力传递率的影响及传递给基础的力。结果表明,在高于固有频率约1. 4倍时,两种浮置板轨道系统才有隔振效果,且两者隔振效果相差不大;力传递率在低于浮置板系统固有频率的低频段,载荷位置处在中间时较小,在边缘时稍大。普通轨道系统力传递率随离开荷载作用位置在振动频率100 Hz以上衰减很快,而两种浮置板随距离在振动频率10 Hz以上衰减较快。两种浮置板轨道系统在相同位移激励的轮轨力作用下传递给基础的力相差不大,并且在中高频具有良好的隔振性能。  相似文献   

12.
板式减振垫轨道能降低列车运营对周围环境的影响,确保城市轨道交通引起的振动满足环保要求,在高等减振设计中普遍采用。基于轮轨耦合作用,建立城轨列车-板式减振垫轨道-下部基础有限元模型,对不同减振垫刚度下板式轨道结构进行模态、谐振分析,并对其减振性能进行研究。研究表明:(1)减振垫轨道结构的固有频率随着减振垫刚度的增大而增大,振型包括轨道板的平动、转动、弯曲和钢轨的侧翻、扭转;(2)钢轨至轨道板的传递损失集中在15~30 d B,而轨道板至基底的传递损失峰值达51 d B;(3)车体加速度、轮轨垂向力、钢轨加速度、基底垂向加速度随着减振垫刚度的增大呈增大趋势,而钢轨位移、轨道板加速度和位移呈减小趋势;(4)板式减振垫轨道在25~100 Hz频段的减振效果较好,特别是1/3倍频程中心频率63 Hz处,插入损失达24 d B;在1~25 Hz频段的减振效果一般,而且局部频段出现振动放大的情况。  相似文献   

13.
以高速铁路32 m混凝土简支箱型桥梁为研究对象,通过有限元软件建立了轨道-桥梁分析模型,采用车辆-轨道-桥梁耦合振动理论,分析了桥梁结构的竖向振动,并将得到的竖向振动响应作为边界条件,导入到箱梁边界元模型中预测箱梁结构噪声。同时基于面板声学贡献分析理论,进行了箱梁梁体的面板声压贡献分析和声功率贡献分析,确定箱梁梁体辐射噪声的最大部位。研究结果表明:列车以200 km/h的速度运行在高架轨道上时,箱梁梁体辐射噪声主要集中0-100 Hz范围内,其中在20 Hz和42 Hz左右有比较突出峰值。同时由面板声学贡献分析可知箱梁梁体主要辐射噪声的部位是箱梁的顶板和两侧翼缘板下面板。  相似文献   

14.
铁路32 m混凝土简支箱梁结构噪声试验研究   总被引:1,自引:0,他引:1  
以32 m单线和双线单室混凝土简支箱梁为对象,通过噪声试验、结构有限元和声学有限元分析,研究箱梁结构噪声的声辐射特性、峰值频率产生的原因及评价方法.结果表明:列车通过桥梁时,离箱梁表面较远处的噪声级起伏不大,可采用稳态算法简化分析;混凝土箱梁的结构噪声主要分布在250 Hz以下,且随频率的增加而迅速衰减,因此理论预测时可将250 Hz作为截止频率;单线和双线箱梁的2个噪声峰值频率分别为63和160 Hz,以及50和315 Hz,二者均在第1个峰值频率处达到最大声压级,且此峰值频率处的噪声具有明显的有调性;不同箱室尺寸箱梁的结构噪声声辐射差异较大,车速并不是噪声的第一决定因素;混凝土箱梁结构噪声的峰值频率出现在声辐射效率和振动响应均较大处,因此应避免结构振动模态和空腔声学模态重合而导致空腔共鸣引起的噪声被放大;建议修订铁路噪声相关规范时,考虑混凝土箱梁低频结构噪声的危害.  相似文献   

15.
对某型地铁车辆整备状态有限元模型进行了模态和5~100Hz正弦激励仿真计算,分析设备吊挂刚度对车体地板的振动影响。计算结果表明,车下设备吊挂刚度对弹性车体的各种振动模态均有不同程度的影响;车体空气弹簧位置激励时,地板在不同吊挂刚度时的振动响应主要集中在40Hz以内,合适的设备吊挂刚度可有效的降低地板的振动幅值并增加一阶垂弯频率,吊挂刚度对地板在12Hz以上的振动响应影响不大,同时发现刚性吊挂有助于增加车体的刚度;设备激励时,引起地板振动响应主要集中在20Hz以下,激励频率在车体一阶垂弯模态频率附近时,弹性吊挂刚度小于一定值时才能有效地减小地板振动的响应幅值。  相似文献   

16.
浮置板轨道的模态分析   总被引:6,自引:2,他引:4  
为了研究低频振动对地铁线路附近精密仪器的影响,设计一种新型参数的浮置板轨道.应用MIDAS/GTS软件,对浮置板轨道进行三维的模态分析,得到6种不同分析工况下轨道的固有频率、振型和振型参与质量,并进一步研究浮置板轨道的传导比.结果表明:①设计的浮置板轨道基本频率为5.7~8.2 Hz,弹簧刚度不变、支承间距增大,或者支承间距不变、减小弹簧刚度,均可以降低浮置板轨道的基本频率;②浮置板轨道的振型以道床板振动为主,同一支承间距下,弹簧刚度不同,浮置板轨道振型相似;同种弹簧刚度下,支承间距不同,振型在低阶部分差别较大,在高阶部分相似;③浮置板轨道的基本频率越低,浮置板轨道的传导比峰值就越小.  相似文献   

17.
减振垫轨道是城市轨道交通高等减振措施中常用的一种轨道结构。为了研究减振垫轨道结构对车致环境振动的影响,首先对减振垫轨道的模态进行分析,其次建立了地铁列车-减振垫轨道-隧道-土体-建筑物系统模型。该系统模型分为两个子模型,将子模型1中的竖向轮轨力作为子模型2的外加激励,计算分析了轨道板、隧道壁、地面和楼层的车致振动加速度特性与振级特性。研究结果表明:由列车运营引起的振动在传递途径中,竖向振动加速度由轨道板到隧道壁的衰减量远大于由隧道壁到地面的衰减量,楼层和地面的竖向振动加速度水平基本相当;轨道板、隧道壁、地面和楼层的1/3倍频程加速度级两个峰值对应的中心频率31.5 Hz、80 Hz与轨道板第5阶、第10阶主振型的固有频率有关;减振垫轨道的中心频率介于3.15 Hz和8 Hz之间的减振效果较好;隧道埋深大于11 m,以及采用减振垫轨道结构的情况下,隧道正上方地面和楼层的Z振级最大值均小于70 dB,能够满足环评标准的要求。  相似文献   

18.
为了深入研究大跨度公轨两用悬索桥的动力特性,以贵州省在建的马岭河三号特大桥为研究对象,基于Midas/Civil建立全桥三维离散单元有限元模型,采用子空间迭代法进行模态分析,得到该桥的自振频率和振型,并采用控制变量法,分析主塔刚度、主缆刚度、加劲梁刚度、吊杆刚度、恒载集度、中央扣和横向抗风支座等六类结构关键参数对其动力特性的影响。研究结果表明:该桥基频为0.172 Hz,对应振型为主梁1阶正对称侧弯,该桥自振频率较同等跨径的普通公路悬索桥高,结构整体刚度较大;增大主塔刚度,主塔侧向振动频率提高;增大主缆刚度,主梁1阶竖向振动和扭转频率提高;增大吊杆刚度,纵飘频率有一定程度提高;增大加劲梁刚度,主梁侧弯和主梁扭转振型频率的提高显著,有助于提高结构的横向刚度和改善结构的颤振性能;而增大恒载集度,以主梁振动为主的侧弯、竖弯、扭转振型的自振频率均有不同程度的降低;中央扣和抗风支座能有效提高结构的整体刚度。  相似文献   

19.
为分析地铁列车运行引起岩石场地振动传递特性,选取青岛某地铁线路区间,对正常运营的地铁引起隧道及地面垂向振动进行同步测试分析.结果表明:1)隧道与地面振动主要集中在50~200 Hz,隧道200 Hz处的振动最为显著,地面60~80 Hz的振动最为显著.地面距离隧道中心线90 m范围内,振动呈波动衰减,在距离隧道中心线30 m与75 m处,存在2个振动放大区,相对于其前一测点,均在8~25 Hz与60~80 Hz频段有所放大;2)隧道壁至地面振动传递损失曲线均近似呈V型分布,高频段振动传递损失较低频段大,传递损失基本在20~25 Hz附近最小,大部分测点在此频段传递损失出现负值,说明此频段附近振动加速度从隧道壁传递至地面有放大现象;3)地铁列车运行引起青岛岩石场地振动传递特性与其他场地类别相比有相似性也有差异性,测试结果可为青岛地铁后期线路规划对地面环境振动影响提供参考.  相似文献   

20.
为分析地铁列车运行引起岩石场地振动传递特性,选取青岛某地铁线路区间,对正常运营的地铁引起隧道及地面垂向振动进行同步测试分析。结果表明:1)隧道与地面振动主要集中在50~200 Hz,隧道200 Hz处的振动最为显著,地面60~80 Hz的振动最为显著。地面距离隧道中心线90 m范围内,振动呈波动衰减,在距离隧道中心线30 m与75 m处,存在2个振动放大区,相对于其前一测点,均在8~25 Hz与60~80 Hz频段有所放大;2)隧道壁至地面振动传递损失曲线均近似呈V型分布,高频段振动传递损失较低频段大,传递损失基本在20~25 Hz附近最小,大部分测点在此频段传递损失出现负值,说明此频段附近振动加速度从隧道壁传递至地面有放大现象;3)地铁列车运行引起青岛岩石场地振动传递特性与其他场地类别相比有相似性也有差异性,测试结果可为青岛地铁后期线路规划对地面环境振动影响提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号