首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对既有小半径R=250 m曲线无缝线路加强的实际需要,利用ANSYS软件建立直线、缓和曲线和圆曲线组成的无缝线路有限元计算模型,研究在不同道床阻力条件下,地锚拉杆设置对线路稳定性的影响。研究得到:道床阻力等于正常值时,即使圆曲线不设置地锚拉杆,轨道也能满足稳定性要求;道床阻力小于正常值时,缓和曲线每10 m、圆曲线根据情况每5 m或每10 m设置1根地锚拉杆,有利于控制轨道变形;夹直线两端缓和曲线钢轨爬行位移在道床阻力减小时会有所增大,建议在夹直线两端各增设一钢轨位移观测桩。  相似文献   

2.
运用有限单元法和无缝线路横向鼓曲稳定性理论,建立无缝线路横向稳定性计算模型,分析钢轨初始弯曲矢度、波长、导曲线半径及道床横向阻力对无缝线路稳定性的影响,提出提高无缝线路横向稳定性的具体措施。  相似文献   

3.
无缝线路稳定性有限元分析   总被引:3,自引:2,他引:1  
建立无缝线路横向胀曲的有限元模型,推导相应的数值计算公式,并编制计算程序。运用该模型,分析道床横向阻力、轨枕失效、扣件横向弹性系数、曲线半径、线路初始弯曲对无缝线路稳定性的影响,并提出提高轨道结构稳定性的具体措施。  相似文献   

4.
无缝线路稳定性分析有限元模型   总被引:8,自引:1,他引:7  
利用有限元法建立包含钢轨、扣件、轨枕和道床阻力为一体的轨道框架模型。研究在温度力作用下无缝线路的臌曲失稳问题。推导相应的数值计算公式并编制了计算程序。轨道框架模型由4种单元组成:用考虑钢轨非线性变形的平面梁单元代表钢轨;无几何尺寸的两结点弹簧单元模拟钢轨扣件;弹性基础上的普通平面梁单元表示轨枕;弹簧单元模拟道床的横向、纵向阻力,并考虑了道床阻力的非线性特性。运用该模型,分析道床横向阻力、轨枕失效、曲线半径和线路初始弯曲对无缝线路稳定性的影响,得到不同工况下钢轨横向位移-温度曲线、钢轨内应力分布及钢轨和轨枕的横向变形分布曲线。  相似文献   

5.
为研究大坡道米轨(齿轨)有砟轨道结构稳定性,通过建立米轨离散元和有限元轨排模型,分析该结构在不同坡度条件下道床阻力变化及在荷载作用下轨排纵、横向稳定性。研究表明:(1)受轨枕与道床之间正压力减小和道砟颗粒之间接触减弱的共同作用,随着坡度增大,轨枕道床纵、横向阻力逐渐降低,且降低幅度明显高于轨枕与道床间正压力的降低幅度;(2)随着坡度的不断增大,在纵向制动荷载作用下轨枕位移显著增大,且有砟道床整体稳定性逐渐降低;(3)综合考虑轨枕位移及有砟道床整体稳定性,建议米轨有砟轨道最大坡度不超过500‰;(4)在温度荷载及制动荷载作用下,为保证米轨铁路曲线段的横向稳定性,在坡度为250‰时,无齿轨段曲线半径≮700 m,有齿轨段曲线半径≮600 m。  相似文献   

6.
为了明确经过道砟胶组织后,道床参数的变化情况,在试验室进行了轨道实尺模型试验,测试了喷道砟胶前后道床纵、横向阻力、支承刚度的变化情况。试验结果表明:如果喷胶量为48 kg/m3,枕底、枕间及砟肩都喷道砟胶时,道床纵向阻力大约提高8.5倍,横向阻力大约提高17.4倍,加载的竖向力为140 kN时支承刚度提高37.6%,并且在卸载5 min内轨枕位移约恢复90%。因此,道砟胶可以应用在小曲线半径无缝线路、无砟轨道向有砟轨道的过渡段上,以提高道床横向阻力、调整道床支承刚度。  相似文献   

7.
研究目的:在此之前,国内曾经对铺设Ⅱ型枕的有砟道床阻力进行过测试,并提出过道床阻力参数。但随着我国高速铁路的大规模建设和既有线的不断提速,有砟轨道普遍使用Ⅲ型混凝土轨枕,同时道床断面尺寸、道砟材质及颗粒级配不断强化提高,确定Ⅲ型混凝土轨枕有砟道床线路阻力是进行有砟轨道无缝线路设计的一项重要基础工作。研究结论:本文选取武汉至襄樊区间增建第二线云梦段作为测试工点,通过现场原位测试和对测试数据进行数理统计分析,拟合确定了Ⅲ型混凝土轨枕有砟道床纵向、横向阻力曲线,同时计算了Ⅲ型混凝土轨枕有砟道床的等效横向阻力,其结果可为铁路无缝线路设计阻力的取值提供参考。  相似文献   

8.
米轨钢枕铁路轨排框架较轻、线路阻力小,应用于无缝线路存在适应性问题。以坦桑尼亚中央线为例,针对米轨钢枕线路的结构特征与特殊运营条件,分析了不同曲线半径、不同阻力等条件下的线路稳定性、钢轨强度,评估铺设无缝线路的适应范围。研究表明:在R300m曲线段无缝线路强度、稳定性可直接通过验算;对R≤300m曲线段采取轨枕加密措施后,强度及稳定性满足要求;但考虑坦桑尼亚地区温度变化较大,允许温升下稳定性安全余量有限,故应在R≤300m小半径曲线段设置必要的加强措施;建议道床选取有砟肩的型式,砟肩高300 mm、宽300 mm。  相似文献   

9.
以在武汉纸坊站和武昌南站进行道床横向阻力现场测试获取的标准道床横向阻力不同的测点实测数据作为初始参数,利用有限元软件建立无缝线路稳定性有限元模型并进行计算,分析站区无缝线路的稳定性。研究结果表明:轨枕端头道砟缺失区段标准道床横向阻力偏小,且容许温升小于规范要求,应及时维修;利用移动加载车进行定点静态加载试验,推导出轨枕横向位移与车测钢轨横向位移的线性关系;通过移动加载试验,提出移动加载时轨枕横向位移不应大于0.60 mm的限值;通过理论计算得出移动加载时的轨枕横向位移曲线,现场发现轨枕横向位移超过0.60 mm的区段道床明显破坏,应及时补充道砟并捣固以确保无缝线路的稳定性。  相似文献   

10.
R=350m曲线铺设无缝线路的研究   总被引:2,自引:0,他引:2  
论文介绍了最大轨温差幅度达到80.3℃、R=350m曲线上铺设无缝线路的用其结果,突破了TB2098-89关于无缝线路铺设曲线半径不小于400m、最大轨温差幅度不超过72℃的限制。在分析小半径曲线铺设无缝线路特点的基础上,根据TB2098-89和TB2034-88,对秦皇岛地区R=350m曲线铺设无缝线路的稳定性和强度进行检算,提出采用Ⅲ型轨枕、I级石碴的轨道结构强轨道横向稳定性的试验方案,并在无缝线路铺设以后,对道床向阻力进行了测试,验算的最大温差幅度比实际值富裕39.7℃,表明试验曲线无缝线路稳定性是有保证的。通过对实际铺设的无缝线路长达400天、通过总重87MGT的观测,无缝线路没有出现失稳现象,钢轨纵向位移和实际锁定轨温变化值都在允许范围内,钢轨磨耗2.7mm较以前的有缝线路7mm减少2.5倍,取得了经济效益。  相似文献   

11.
研究目的:本文以某山地米轨铁路为例,研究坡度250‰以上有砟轨道结构的稳定性和极限坡度。首先进行米轨混凝土枕的道床阻力测试试验,并建立轨排结构有限元模型,分析坡度和扣件阻力对轨排结构稳定性的影响;接着建立米轨有砟轨道三维有限元模型,研究坡度与竖曲线半径对有砟道床稳定性的影响;最后,根据扣件阻力、道床阻力与大坡道有砟轨道稳定性的关系提出米轨有砟轨道极限坡度和竖曲线半径的建议值。研究结论:(1)通过试验测试,得到了道床阻力-位移关系,结果表明轨排结构的稳定性随坡度增大而减弱,在扣件阻力不大于10 k N/组时其极限坡度为500‰;(2)有砟道床的稳定性随着坡度的增大而逐渐减弱,在列车荷载作用下,有砟道床保持稳定的最大坡度为500‰;(3)变坡点凸形竖曲线附近道床稳定性弱于直坡道地段,且其稳定性随着竖曲线半径的增大而逐渐增强,在坡度为250‰的情况下,为了保持有砟道床稳定竖曲线半径不能小于400 m;(4)本文研究成果可为米轨铁路大坡道有砟轨道结构稳定性分析提供理论与试验依据。  相似文献   

12.
本文通过分析不同工况对半径250 m曲线无缝线路临界轨温的影响,合理确定半径250m曲线作业轨温范围及稳定性影响因素。结合现场养护维修过程中遇到的问题和设备整修方法,从钢轨选用及修理、轨枕选用、道床修理等方面提出半径250 m曲线稳定性控制措施。  相似文献   

13.
根据有轨电车轨道结构特点,采用有限元软件建立钢轨-道床三维空间耦合力学模型,研究曲线半径、曲线长度对无缝线路受力和变形特性的影响。研究结果表明:由于无缝线路和下部基础均为连续结构,在最大温度荷载作用下,曲线段支承层带动无缝线路向外臌曲变形,且在相同圆心角条件下,曲线半径越大,支承层变形量越大,无缝线路受到直线段挤压越显著,从而形成折角;反之,半径较小对无缝线路受力和变形更有利,但此时会限制有轨电车允许通过速度,延长通过时间,影响交通,应综合考虑。常用荷载作用时,钢轨受力和变形仅随圆心角的增加而逐步减小,与轨温、作用点、半径无关,建议选用较大圆心角,以降低横向力对无缝线路受力和变形的影响。  相似文献   

14.
为完成既有川黔(重庆—贵阳)铁路转关口站和綦江站两座曲线车站站线的无缝化改造,采用原位测试的方法测试了其道床纵向、横向阻力,并据此进行无缝化改造可行性分析,进而提出曲线车站站线无缝化铺设和养护维修建议.结果表明:测试区段69型轨枕的道床纵向、横向分布阻力分别为22.69、12.15 N/mm,Ⅱ型轨枕的道床纵向、横向分...  相似文献   

15.
悬挂式单轨车辆在曲线运动中自主倾斜。舒适度是影响悬挂式单轨线路平面参数的主要因素,研究基于舒适度的平曲线参数合理取值具有重要意义。分析悬挂式单轨车辆力学特性,选取横向倾斜角、未被平衡横向加速度作为圆曲线段舒适度指标,选取横向加速度时变率、横向倾斜角速度、未被平衡横向加速度时变率作为缓和曲线段舒适度指标。构建舒适度指标与平曲线参数间的关系模型。基于不同舒适度要求、速度、最大倾斜角计算确定线路平面最小曲线半径、缓和曲线长度。当最大倾斜角6°、最大未被平衡横向加速度0.5 m/s~2、速度80 km/h时,平面曲线最小半径应不小于325 m。当半径较小时,缓和曲线长度主要取决于横向倾斜角速度、未被平衡横向加速度时变率。  相似文献   

16.
利用铁摩辛柯能量法推导无缝线路稳定性计算公式。将轨道视为一根具有一定横向刚度铺设在连续弹性介质(道床)的有限长梁。在临界温度压力作用下,具有初始不平顺的钢轨产生微小的横向变形,且处于微弯平衡状态。根据钢轨应变能增量与外力功的改变相等,直接运用铁摩辛柯能量法,推导出临界温度压力计算公式,编写相应的计算程序,计算具体算例,获得与统一公式计算接近的结果。将曲线半径、道床横向阻力、弹性弯曲矢度、塑性弯曲矢度等参数取不同值代入计算程序,得出各种参数变化对无缝线路稳定性的影响。并据此提出线路养护工作中保证稳定的重要原则。  相似文献   

17.
新建铁路道床质量状态参数试验分析   总被引:2,自引:0,他引:2  
对新线一次铺设跨区间无缝线路的3个施工阶段,即单元轨节锁定前、跨区间无缝线路锁定前、开通(验收)前,进行道床质量状态参数测试。测试结果表明,采用合理的施工工艺和方法,按基本作业流程进行施工,道床质量状态参数能达到规定要求。由于在一次铺设跨区间无缝线路的不同阶段,对道床质量状态的要求各不相同,建议在不同施工阶段,选取不同的道床质量状态参数进行评估。在单元轨节锁定前,为保证无缝线路单元轨节的稳定性,建议采用道床横向阻力作为主要指标来评估道床质量状态;在线路经全面整道达到验收时,由于轨道的整细工作会使部分道床质量状态参数略有下降,这一阶段宜采用横向阻力、枕下刚度等指标对道床质量状态进行较为全面的评估。  相似文献   

18.
为分析列车制动力和温度荷载对小半径曲线上带减振扣件整体道床轨道横向力学特性的影响,为小半径曲线上无砟轨道设计提供理论依据。参考贵阳地铁1号线带减振扣件的整体道床结构形式,简化钢轨-桥梁-墩台垂向耦合力学模型,应用有限单元法,计算分析不同列车制动力和温度力对小半径曲线桥梁轨道结构横向力学特性的影响。计算分析结果表明:从无砟轨道稳定性角度出发,对于在有小半径曲线桥梁上的带减振扣件的承轨台整体道床轨道,建议当圆曲线半径为450 m时,扣件横向刚度要大于5×107 N/m;当扣件横向刚度为5×107 N/m时,圆曲线半径要大于450 m;当扣件横向刚度为1×108 N/m时,圆曲线半径要大于350 m。当圆曲线半径为450 m时,为减小制动力对曲线钢轨的影响,建议尽量减小曲线长度,缩小钢轨横向位移值。  相似文献   

19.
重载铁路无缝线路稳定性分析   总被引:2,自引:0,他引:2  
影响无缝线路稳定性的主要因素是温升幅值、初始不平顺、轨道框架抗弯刚度和道床横向分布阻力。通过对大秦线特殊因素对无缝线路稳定性影响的分析,提出确保无缝线路稳定性措施,在设计、铺设、无缝线路设备、维修和养护作业标准、人工清筛作业、锁定轨温、大修更换长轨条施工和胀轨跑道等方面提出要求和具体措施。  相似文献   

20.
影响无缝线路稳定性的主要因素是温升幅值、初始不平顺、轨道框架抗弯刚度和道床横向分布阻力。通过对大秦线特殊因素对无缝线路稳定性影响的分析,提出确保无缝线路稳定性措施,在设计、铺设、无缝线路设备、维修和养护作业标准、人工清筛作业、锁定轨温、大修更换长轨条施工和胀轨跑道等方面提出要求和具体措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号