首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 126 毫秒
1.
紧邻地铁区间隧道深基坑工程的设计和实践   总被引:2,自引:0,他引:2  
研究目的:随着城市轨道交通的快速发展,中心城区的深基坑工程经常紧邻正在运营的地铁区间隧道,深基坑开挖需确保邻近地铁区间隧道严格的变形保护要求,基坑工程设计由强度控制转变为变形控制。结合上海典型软土地层中紧邻地铁区间隧道深基坑工程的设计和成功实践,总结相关设计方法和措施,给类似深基坑工程设计提供参考。研究结论:针对基坑开挖对邻近地铁盾构区间隧道附加变形<20 mm的严格保护要求,在紧邻上海地铁2号线区间隧道的南京西路1 788地块基坑工程中,采用中间设置临时隔断地下连续墙将基坑一分为二、"分区顺作"的设计方法,并采取了数值模拟分析和专项保护措施,在工程实施过程中对基坑工程和区间隧道进行了详尽的基坑监测。监测结果表明,基坑本身安全、对邻近地铁区间隧道的影响都在安全可控的范围内。  相似文献   

2.
研究目的:随着城市的不断发展,城市内地铁线路的建设越来越多,不可避免地会有大量基坑建设紧邻已建或在建的地铁车站或区间隧道,地铁深基坑的开挖工程对周边已有地铁建筑的相互影响也日益突出。本文以苏州轨道交通1号线星海街站为例,通过对车站两侧基坑的两种不同开挖工况进行数值计算,分析基坑对称开挖与非对称开挖对已有轨道交通的变形影响,拟获取不同开挖方式工况下对既有地铁车站结构变形影响的基本规律。研究结论:(1)基坑开挖对地铁车站结构变形的影响主要体现在垂直地铁轴线方向的变形及竖向沉降;(2)相对于非对称开挖,基坑对称开挖对地铁车站结构的变形影响较小;(3)从对地铁车站结构变形影响最小化的角度来看,当具备对称开挖基坑条件时,建议采取两侧基坑同时开挖的方法;(4)本研究成果可为今后地铁安全评估提供参考。  相似文献   

3.
研究目的:软土地区基坑群施工对邻近地铁结构变形影响较为复杂。本文基于工程实例反演土层参数,综合考虑土体小应变、剪切强度、压缩硬化、加卸载等特性,分析基坑平面布置、深度、数量等因素下软土地区基坑群对邻近地铁结构的变形影响,以期为软土地区地铁高架结构周边基坑群施工变形控制提供参考。研究结论:(1)单个基坑与结构间的距离、基坑宽度及深度对结构变形均有明显影响;结构横向变形发展超过竖向,特别在距单个基坑约2H范围内(H为基坑深度);单个基坑开挖影响范围超过5H;基坑开挖宽度约为8H时,结构变形曲线产生较明显的拐点;结构变形在单个基坑开挖深度5 m内较小,但在开挖深度超过10 m后,变形明显;(2)单侧双坑不同开挖顺序对结构变形影响相当,但横向变形超过竖向;不同工序引起的结构变形曲线形态有明显差异;(3)对称双坑开挖引起的结构横向及竖向变形均表现出一定的非线性特征,结构竖向变形表现出较明显的非线性叠加效应,变形量约为单个基坑线性叠加值的1~1.5倍,不同工序对结构横向变形影响较小;(4)双侧四坑施工导致结构变形产生明显的非线性特征,结构横向最终变形较小,结构竖向最终变形曲线呈现明显的蝶形状特征,变形曲线在坑间出现明显拐点,且变形极值点从基坑中心对应区域向坑间移动;(5)对称双坑、双侧四坑间对应区域的结构最终横向变形曲线均表现出明显的回弹现象;(6)本研究结论对邻近基坑群的地铁高架结构整体变形控制有一定指导意义。  相似文献   

4.
软土地区邻近地铁隧道及保护建筑物的深基坑开挖是一项复杂的工程,如何采取措施控制深基坑变形、保护环境,已成为一个重要的研究课题。结合工程实践,应用三维有限元分析方法,分析地中壁工法及其进一步控制深基坑变形的机理。对于邻近地铁隧道的深基坑开挖,在采取加强围护结构刚度、坑内加固、利用时空效应开挖支撑等措施来控制深基坑变形的同时,地中壁工法的应用可进一步控制深基坑变形,以保护邻近地铁隧道及建筑物的安全。  相似文献   

5.
邻近已运营地铁车站单侧深基坑开挖卸载会引起车站结构发生不均匀变形,但目前对其变形机制还缺乏深刻认识。结合长沙地区某地铁车站工程实例,基于数值方法对深基坑开挖引起的邻近地铁车站结构变形发展变化规律进行了分析。研究结果表明,随着开挖深度的增加,地铁车站围护结构水平变形逐渐增大,且最大水平位移发生在桩顶;开挖过程中既有地铁车站底板局部向上抬升,且车站整体发生背向基坑的倾斜;基坑周边地表沉降随着基坑开挖的进行逐渐增大,但仍在结构安全和正常使用要求的范围之内。  相似文献   

6.
深基坑开挖对既有地铁隧道的影响分析及控制措施   总被引:3,自引:1,他引:2  
软土地区邻近地铁运营线路的深大基坑开挖是一项极其复杂的工程.基坑开挖过程中,如何保证地铁隧道的稳定和安全是整个工程中必须考虑的问题.通过同类工程实测反分析的设计施工参数,应用三维有限元分析手段,预估分析基坑开挖对紧邻地铁隧道的影响,探讨减少基坑开挖对紧邻地铁隧道影响的控制措施,以保证地铁的正常运营,为类似工程设计与施工提供借鉴和参考.  相似文献   

7.
基坑周围环境的保护要求日趋严格,基坑工程近邻地铁车站和隧道的情况亦日益常见。为此,优化基坑开挖方案以控制车站和隧道的变形则至关重要。以天津市某与地铁车站贴建的深基坑工程为背景,采用考虑土体小应变硬化特性的有限元方法,结合3种不同开挖顺序的施工方案,分析两侧基坑开挖对既有车站和隧道变形的影响。计算结果表明,在控制车站和隧道变形方面,对称开挖的施工方案最优,合理制定两侧基坑开挖的顺序能有效控制车站和隧道的水平位移,但对隧道沉降的控制效果不明显;非对称开挖时,先施工小基坑优于先施工大基坑。  相似文献   

8.
研究目的:针对现有软土地层邻近地铁深基坑开挖工序研究没有考虑软土的流变特性且缺乏系统性的情况,以深圳地铁11号线前海湾车站为工程背景,通过考虑淤泥地层的蠕变特性,模拟研究基坑不同横向、纵向分块和竖向分层开挖对基坑和邻近地铁隧道的变形影响,以期为前海湾站基坑的开挖工序选择提供理论依据。研究结论:(1)当基坑水平向只横向分块时,应先开挖远离隧道一侧的基坑土体;(2)基坑竖向分层开挖、只纵向或横向分块开挖时,桩最大水平位移与分块数呈指数关系;水平方向不分块时,竖向分层开挖厚度控制在1.5~2 m之间可使基坑靠近隧道一侧桩体最终变形值减小9%;(3)在分块数相同且不改变支撑架设的条件下,基坑横向分块且远离隧道一侧先开挖的效果最好,其次为横向和竖向都分块,最后为纵向分块;(4)研究结果对前海湾车站基坑以及类似深基坑工程的施工具有指导意义。  相似文献   

9.
敏感环境下深基坑的设计与三维数值分析   总被引:4,自引:0,他引:4  
研究目的:基坑工程开挖深度和规模越来越大,以及周边越来越复杂敏感的环境条件,给基坑工程的设计施工提出了更严格的变形控制要求,因此对基坑及周边环境变形的预测非常重要。研究结论:详细阐述了上海软土地区一邻近多幢6层砖混结构住宅的深基坑工程支护设计方案及周边环境保护的技术措施。通过PLAXIS 3D Foundation软件建立三维有限元模型模拟了基坑开挖对邻近住宅的影响,与实测数据的对比表明,围护体变形和邻近住宅的沉降计算值与实测值较吻合,建立的模型和采用的分析方法可以较有效地预测基坑开挖对周边环境的影响,为设计和施工提供了重要依据。  相似文献   

10.
深基坑开挖会引起基坑周边土体应力场变化和土体位移,对邻近建筑物造成影响。本文以杭州市地铁汽车城站深基坑为例,分析了基坑开挖对邻近建筑物沉降的影响,研究结果表明基坑开挖使邻近建筑物地基土体沉降量超出规定,采用高压旋喷桩止水帷幕及对建筑物基础注浆加固的方法,有效控制了邻近建筑物的沉降变形。  相似文献   

11.
基坑开挖与降水会使邻近既有地铁隧道产生内力调整和变形重分布,影响其正常使用和运营安全。开挖与降水过程中基坑支护、地基土体和隧道结构之间相互作用和影响,其变形稳定问题是一个复杂的三维力学问题,可采用三维数值模拟进行分析。基于FLAC3D有限差分数值分析软件,对南京长江漫滩区某大面积基坑开挖全过程进行模拟,重点分析开挖卸荷、降水对邻近2条地铁隧道结构的变形影响。计算表明,基坑开挖卸荷时产生的结构变形量值和变形相对曲率较小,未超过安全控制值;但降水产生的结构沉降变形量值较大,对地铁线路的正常运行产生不利影响。  相似文献   

12.
李杰 《铁道建筑技术》2009,(6):81-85,108
以北京地铁十号线国双区间暗挖下穿既有地铁一号线为实例,对开挖引起的新建隧道垂直下穿既有线不同厚度间隔土层的影响进行研究分析。在计算中将对新建隧道对既有隧道的影响进行分析,得出了地铁振动荷栽引起的压缩变形规律,从而在施工中对开挖进行了有效的知道,确保了施工安全和既有地铁的正常运营,对城市地下隧道修建具有一定指导意义。  相似文献   

13.
软土深基坑施工期变形具有明显的时空效应,以宁波软土地区相连深基坑为工程背景,对软土地区相连深基坑开挖的时空效应开展研究。基于基坑施工过程中地表沉降、地连墙水平位移、支撑轴力的监测数据,分析施工工序、开挖深度等因素对不同位置处基坑结构与土体的变形影响,并通过有限元软件对2基坑同时开挖的情况进行计算讨论。研究结果表明:采用2个基坑单独开挖的顺序,在一个基坑开挖时,已完成的地连墙或已封顶的车站结构将对这一侧的地表沉降和地连墙水平位移有较好的约束作用;地表沉降与地连墙水平位移在基坑长边上的值大于端头部分,且这2个变形值具有明显的深度效应,即随着开挖深度的增加,变形值增加更快;支撑轴力的变化主要受开挖土体的位置影响,越近的土体开挖,支撑轴力增加越大;若采用2基坑同时开挖的方式,控制中间部分地连墙的变形将是重点,施工安全也面临较大挑战。  相似文献   

14.
本文以天津地铁5号线思源道站结建工程为背景,从施工监测和数值模拟两方面对基坑施工过程的变形控制进行研究。通过对周边环境、深层位移、基坑自身支撑体系等进行监测,实现工程施工全过程数据信息的无缝对接和实时反馈,保证了既有地铁站安全运营。建立数值仿真模型,对基坑周边环境竖向沉降、水平位移、基坑自身支护体系受力变化等进行研究分析,验证基坑开挖方式的可行性。研究结果表明,对于零距离近接既有地铁站地下空间拓建施工,基坑采用"分层岛式"开挖及"地下连续墙+混凝土环形内支撑"支护体系,能有效地控制基坑变形,确保周边环境和基坑自身安全。  相似文献   

15.
不同开挖步骤引起浅埋隧道地表沉降的数值分析   总被引:11,自引:3,他引:8  
地铁施工扰动地层,必然造成相应的地层变形。结合沿海地区软土地区浅埋暗挖矩形隧道施工,使用有限元软件对分部开挖进行非线性数值模拟,分析矩形隧道初期支护在开挖过程中的地表沉降变形。分析结果表明,浅埋软土矩形大跨隧道在开挖过程中,群洞效应的作用和施工方案有密切关系,在此基础上提出了控制地层变形的技术措施,在天津地铁1期工程施工中得到了充分的利用并且取得了良好的效果。  相似文献   

16.
大型渡槽工程对于我国水资源配置优化具有重要作用,目前针对考虑土体-临时支架耦合的大型渡槽边坡开挖施工位移响应的有限元研究工作尚未开展。本文结合淠河总干渠渡槽边坡开挖及临时支架施工案例,基于有限元软件MIDAS GTS NX,计算得到渡槽不同施工阶段土体和临时支架结构水平和竖向位移响应。结果表明:土体开挖阶段,土体水平变形与竖向整体隆起变形不断增加,最大水平和竖向变形值分别为12.19 mm和16.70 mm,符合规范要求;临时支架变形相应增加,最大水平和竖向变形值分别为12.19 mm和13.89 mm。后续加载阶段,土体水平和竖向变形趋于稳定值11.38 mm和16.70 mm,临时支架水平和竖向变形趋于稳定值11.38 mm和13.40 mm。  相似文献   

17.
富水蚀变岩大断面高速铁路隧道开挖大变形控制技术   总被引:1,自引:0,他引:1  
以富水花岗岩侵入蚀变带区域高速铁路隧道建设为背景,对隧道开挖围岩变形控制技术进行研究。运用隧道工程理论、数值模拟和现场监测等技术与方法,提出了从全断面开挖法、台阶法、CD法到CRD法的安全度逐渐增加的隧道开挖方法,确定了避免富水花岗蚀变岩进一步应变软化和力学参数弱化的隧道开挖支护结构形式及其参数,得出了适当加大预留变形量结合衬砌紧跟的施工工艺。实践表明,按研究出的开挖方法和支护方案进行施工,可以有效控制隧道围岩大变形而使变形快速收敛,能够减少侵限处理工作量,并确保富水花岗蚀变岩隧道开挖时围岩稳定和地下工程结构安全。  相似文献   

18.
研究目的:城市地铁换乘车站基坑施工难度大,维护结构安全性和稳定性尤为重要。针对某换乘车站工程地质条件、周边建筑环境和工艺特点,选取合适的围护方案和水平支撑体系。采用现场测试方法,分析基坑围护桩水平位移和钢支撑轴力变化规律,得出城市地铁换乘车站基坑支护有益结论,为相类似工程提供借鉴。研究结论:基坑开挖过程中,围护桩的变形随着开挖深度的增加而增大,由于桩顶设置有冠梁,围护桩变形最大值出现在开挖深度的中下部,随着开挖深度的增加,最大位移值的位置也随之下移。支撑轴力值在开始时增加量很大,随着基坑的开挖和下一道支撑的安装,变化幅度不大;施工过程中各道支撑的实测轴力占设计值百分比均小于70%。  相似文献   

19.
浅埋暗挖大跨地铁风道施工技术   总被引:1,自引:0,他引:1  
研究目的:本文主要介绍了浅埋暗挖大跨地铁风道工程施工方法选择、施工工序及施工要点,并通过对地层变位的监控量测,实现信息化施工.研究结论:(1)风道施工过程引起的地表沉降的规律,可以划分为五个阶段:零变形阶段、微小变形阶段、剧增变形阶段、缓慢变形阶段、基本稳定阶段;(2)开挖支护对引起地表沉降的影响可达到地表总沉降的76.6%~92.5%;(3)路面外载荷对地表沉降的影响也不容忽视,建议采用在路面铺设钢板的方法来缓冲和扩散荷载的作用.  相似文献   

20.
研究目的:对某大型地铁车站深基坑开挖过程中的软弱场地变形监测结果进行了统计分析,对基坑开挖引起的地面沉降、墙体水平位移和立柱桩体沉降的时空变化规律进行了整体分析,尤其是对不同基坑开挖深度对基坑变形速度的影响规律进行了总结。相关的结论和建议对城市软弱地基内地铁车站深基坑的变形监测方案设计、施工组织设计和施工安全控制等都具有一定的参考价值和指导意义。研究结论:(1)在深软场地深基坑开挖完成后地铁车站主体结构施工过程中拆撑可能造成地面的沉降比基坑开挖过程中产生的累积沉降还要大,应加强地铁主体结构施工过程中地面的沉降观测;(2)基坑侧壁水平累积位移与每次开挖土层厚度及其土层性质关系密切,随着开挖土层埋深的增大,基坑侧壁水平累积位移累积速度明显加快;(3)当基坑开挖深度有较大差异和基坑底部土层厚度分布极不均匀时,应考虑验算立柱桩的差异沉降;(4)软弱场地深基坑工程开挖引起的场地变形时空效应非常明显,随着开挖的进行,应沿纵向按限定长度逐段开挖,在每个开挖段分层、分小段开挖。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号