首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 781 毫秒
1.
硅酸盐水泥初始水化流变特性与结构形成研究   总被引:2,自引:0,他引:2  
采用AR2000高级流变仪及无电极电阻率测定仪研究硅酸盐水泥水化的流变特性及交变电场下电阻率变化,讨论水泥品种、化学外加剂对水泥初始水化流变特性及结构形成的影响,结合硅酸盐水泥水化初始结构形成及发展的结构形成模型,建立水泥初始水化流变特性模型。研究表明:水泥初始水化储能模量变化规律为S形变化,水泥水化进入诱导期时存在结构突变;水泥初始水化流变特性规律与水泥水化结构形成与发展、物理力学性能之间存在一定关联性;缓凝型化学外加剂的引入,促进了水泥初始水化储能模量突变过程,但延缓早期水化结构的形成与发展。  相似文献   

2.
研究目的:蒸汽养护是轨道板混凝土的常用养护方式,但蒸汽养护易造成混凝土水化产物内部损伤。为研究轨道板混凝土合适的加速养护方式,探讨不同养护方式对水泥水化及力学性能的影响,试验45℃蒸汽、45℃干热、保温和自然四种养护方式下轨道板混凝土的温升、应变、抗压强度及水化进程,并观察水化产物的微观形貌。研究结论:(1)蒸汽和干热养护下混凝土升温速率较快,提升早期强度效果显著,0~7 h升温阶段,表现为温胀变形,7 h之后为恒温和降温阶段,表现为收缩变形,早期水化产物中Ca(OH)2和AFt晶体较多,后期水化产物微裂缝较多,造成后期抗压强度有所降低;(2)保温养护下混凝土升温速率略低于蒸汽和干热养护,能够促进混凝土早期强度发展,养护18 h抗压强度可达到轨道板混凝土脱模强度要求,混凝土主要为收缩变形,水化产物缺陷较少,后期强度稳定;(3)保温养护可以作为轨道板混凝土的一种加速养护方式。  相似文献   

3.
使用振弦式应变计测量蒸汽养护活性粉末混凝土材料7d内的收缩值变形情况,研究活性粉末混凝土早期各阶段的收缩规律及其控制方法。研究表明:高温蒸养活性粉末混凝土7d内的总收缩应变高达1 800×10-6;收缩发展过程分为5个阶段:蒸养前以塑性收缩为主,应变为1 000×10-6~1 200×10-6;蒸养初期升温阶段以升温和吸湿膨胀为主,应变为550×10-6~650×10-6;蒸养期间以自收缩和化学收缩为主,应变为600×10-6~700×10-6;蒸养降温阶段以降温收缩和干燥收缩为主,应变为300×10-6~400×10-6;蒸养结束后3d内的收缩应变小于30×10-6,主要是干燥收缩。用粉煤灰和矿粉替代部分硅粉对活性粉末混凝土早期收缩有显著的抑制作用,矿粉主要抑制活性粉末混凝土蒸养过程中的自收缩,在较低掺量下作用效果优于粉煤灰,而粉煤灰主要抑制活性粉末混凝土的干燥收缩,在较高掺量下可以更有效降低蒸养结束时刻温湿度突变造成活性粉末混凝土开裂的风险。减缩剂和膨胀剂均可有效抑制活性粉末混凝土的早期收缩以及收缩开裂的风险,但掺入过高的膨胀剂会造成水泥水化初期的塑性收缩大幅增加,应予以特别注意。  相似文献   

4.
粉煤灰对高性能混凝土早期收缩的抑制及其机理研究   总被引:8,自引:0,他引:8  
自收缩是引起低水胶比高性能混凝土早期开裂的主要原因。通过不同掺量粉煤灰混凝土自收缩的测定,研究粉煤灰对高性能混凝土自收缩的抑制作用。通过水化结合水和内部孔含量的测定以及微观结构形貌分析,研究粉煤灰抑制自收缩的作用机理。研究表明:粉煤灰通过改变胶凝材料体系水化速度、徐变系数、弹性模量,可以有效抑制早期混凝土的自收缩。粉煤灰掺量在0~20%范围内,混凝土自收缩随着粉煤灰掺量的增加而减少,但粉煤灰惨量超过20%后自收缩减少的幅度变小。粉煤灰抑制自收缩的作用在初凝至1 d龄期内非常突出。  相似文献   

5.
采用等温量热法、X射线衍射(XRD)和化学结合水量测定等方法,研究了含有不同比例的粉煤灰或磨细石英粉的复合胶凝材料在不同养护温度条件下的水化过程,观察了水化产物量和水化程度随水化龄期变化情况。在掺量相同时,矿物掺和料的种类变化不会对复合胶凝材料的初期水化过程有明显影响,其反应过程仍由其中所含硅酸盐水泥控制。活性的粉煤灰可延迟复合胶凝材料的水化反应,而惰性的石英粉则不会。热激发作用可显著促进粉煤灰的火山灰反应,但对于硅酸盐水泥的长期水化反应有抑制作用。热养护能促使水化初期生成的高含水率的CSH向低含水率的CSH变化;粉煤灰的火山灰反应生成的也是含水率较低的CSH凝胶。  相似文献   

6.
为进一步理解不同温度下含多种胶凝组份的自密实混凝土的水化特性,采用等温量热和水化动力学模拟等方法,分别研究掺粉煤灰、矿粉、膨胀剂、纳米硅和黏度改性剂等矿物外加剂水泥复合胶凝体系在5,10,20和30℃下的水化放热速率和放热量,并基于Cahn动力学模型计算水化产物的成核速率和生长速率,讨论温度和矿物外加剂对相应水化动力学参数的影响。研究结果表明:矿物外加剂的掺入,降低了胶凝体系水化放热峰值,增大了水化产物的成核速率,促进了水化放热速率峰值提早出现,膨胀剂和纳米二氧化硅促进作用尤为明显;温度升高明显增大了体系水化产物的成核速率与生长速率,且对多元复合胶凝体系的影响更为显著。  相似文献   

7.
研究了混凝土养护膜吸水性、保水性、释水性和透水汽性等保湿性能参数,对比了不同养护方式对混凝土收缩、水化产物及微观结构的影响。试验结果表明,混凝土养护膜可维持内部密闭空间的湿度在养护期间高于95%。与自然养护相比,采用养护膜养护可大幅降低混凝土早期收缩和长期收缩。X射线衍射数据表明养护膜养护对水泥水化产物组成无明显影响,表层水化程度与标准养护相近,略高于自然养护。扫描电子显微镜观察结果显示,养护膜养护可增加水泥净浆表层密实度。  相似文献   

8.
利用XRD,ESEM和化学结合水量,研究了具有不同水胶比的硅酸盐水泥、膨胀剂和矿物掺和料组成的复合补偿收缩胶凝材料的水化产物和水化反应程度随水化龄期的变化规律。各种组成的补偿收缩胶凝材料在水化开始后的6h内都处于诱导期,水化产物刚开始形核生长,到24h水化产物大量形成;化学结合水量在第1d迅速增加;一直到第7d,化学结合水量仍然明显增加;此后则增加幅度明显降低在高水胶比条件下,胶凝材料的最终化学结合水量与其水化活性大小成正比。在低水胶比条件下,动力学因素也影响胶凝材料的最终水化程度,使其化学结合水量的增加幅度随水胶比降低而明显降低,而且与胶凝材料的水化活性不成比例。  相似文献   

9.
研究目的:速凝剂是喷射混凝土施工中重要的材料,偏铝酸钠(NA)和硫酸铝(AS)作为有碱和无碱速凝剂的主要组分,对喷射混凝土性能影响显著。为系统研究速凝剂主要组成对水泥水化影响机理,本文通过凝结时间、等温量热仪、XRD-Rietveld全谱拟合及扫描电子显微镜研究偏铝酸钠(NA)和硫酸铝(AS)对水泥水化历程、特征水化产物及水泥石微结构的影响。研究结论:(1) NA和AS提高了水泥早期水化放热速率及放热量,大幅度加速了水泥的凝结;(2)掺入NA和AS显著加速了C_3A的水化速率并分别生成以六角板状AFm及棱柱状AFt为主的特征水化产物;(3) NA和AS加速了C_3S早期水化,但是早期特征水化产物AFm和AFt抑制了C_3S后期进一步水化,使得1 d和3 d后C_3S水化速率相对于空白组明显放缓;(4)掺入NA和AS明显提高了水泥早期水化速率,但降低了后期水化速率,使得C-S-H凝胶生长不充分,EDS显示养护28 d后水泥石中C-S-H凝胶Ca/Si均高于空白组,这是由于掺入NA和AS早期生成的致密水化产物层包裹了水泥矿物,从而延缓了后期水化进程;(5)本研究成果可为喷射混凝土早期水化特征及强度发展规律研究提供理论依据。  相似文献   

10.
海沧大桥大体积混凝土锚碇温度场有限元分析   总被引:1,自引:0,他引:1  
结合厦门海沧大桥大体积混凝土锚碇分层浇筑动态施工过程,基于瞬态温度场三维有限元分析方法,应用大型通用商业软件ANSYS,考虑外界气温的周期变化、太阳辐射、水化生热、浇筑温度、分层厚度、边界条件随龄期变化及分层浇筑动态施工过程等因素,对大体积混凝土施工期和运行期的温度场进行仿真分析.分析结果表明:锚碇混凝土温度的变化过程可分为温升期、降温期和稳定期3个阶段,施工期和运行期影响混凝土锚碇温度的主要因素分别是水泥水化热和环境温度;水泥水化热是混凝土温升最根本、最直接的原因,采用低热水泥、降低水泥用量是降低水化热温升的直接手段;温度场中靠近外表面的温度梯度比较大,而内部温度梯度相对较小,应特别注意混凝土早期的内部降温、外部保温和养护.  相似文献   

11.
调节混凝土内部相对湿度的释水因子技术及其应用   总被引:7,自引:0,他引:7  
提出调节混凝土内部相对湿度的释水因子技术,研究了释水因子对密闭环境下高强微膨胀混凝土内部相对湿度、体积变形以及抗压强度的影响规律。研究结果表明,研制的释水因子可以有效调节钢管高强微膨胀混凝土内部相对湿度,改善其体积变形行为;掺加较大量的释水因子对于高强微膨胀钢管混凝土抗压强度会产生一定影响。  相似文献   

12.
以优质粉煤灰和硅灰复合粉体为基材外掺少量激发剂配制而成的复合功能掺合料(CUFG)是一种新型水泥混凝土路面快速修补材料。采用42.5级普通硅酸盐水泥,单方水泥用量315~360 kg/m3,掺入20%~30%复合功能掺合料,可配制出24 h抗压强度大于20 MPa,24 h抗折强度大于3.5 MPa;28 d抗压强度大于50 MPa;28 d抗折强度大于7.0 MPa的快硬高早强混凝土,满足24 h开放交通所需的最低强度指标要求,且后期强度也有较大的提高。CUFG的掺入提高了快速修补混凝土(RRC)早期和后期的折压比,降低了混凝土的干缩程度,有利于提高快速修补混凝土的抗裂性能。掺CUFG快速修补混凝土的抗氯离子渗透能力较强,同时具有优异的耐磨性能。  相似文献   

13.
曹乾桂 《铁道建筑》2022,(2):141-145
结合鲁南(兰考—日照)高速铁路曲阜东站路基工程实际需求和泡沫混凝土技术现状,通过室内外试验,对比了粉煤灰、铁尾矿微粉、耐碱短切玻璃纤维及制备工艺对泡沫混凝土力学性能、水化热、干缩变形等影响,提出了与工况相适应的绿色高性能泡沫混凝土配制关键技术,并进行了工程应用.结果表明:铁尾矿微粉、粉煤灰在泡沫混凝土中具有良好的级配填...  相似文献   

14.
张戈 《铁道学报》2020,(1):112-118
速凝剂是喷射混凝土施工中重要的材料之一,偏铝酸钠(Na Al O2)和硫酸铝(Al2(SO4)3)作为有碱和无碱速凝剂的主要组分(以下分别简称NA和AS),对喷射混凝土性能影响显著。通过化学结合水测试、热分析、压汞测试及强度测试,研究了偏铝酸钠和硫酸铝对水泥水化程度、水化产物类型、硬化浆体孔结构及力学性能的影响。结果表明:NA和AS提高了水泥早期水化速率,降低了浆体内部总孔隙率和最可几孔径,提高了硬化水泥浆体1d的抗压强度,并分别生成以3CaO·Al2O3·Ca SO4·12H2O和3CaO·Al2O3·3CaSO4·32H2O(以下分别简称AFm和AFt)为代表的早期特征水化产物。1 d以后,NA和AS均减缓水泥水化速率及孔结构细化程度,对抗压强度发展产生不利影响,28 d后,掺入NA和AS水泥浆体内部无害孔数量少于空白组,有害孔和多害孔数量多于空白组,抗压强度相对于空白组均产生一定程度的倒缩。掺入AS的硬化水泥浆体无害孔,有害孔和多害孔含量介于空白组和NA之间,对于抗压强度的折减程度要低于NA。  相似文献   

15.
箱身预制是箱形桥工程中重要的工序之一。箱身预制长度主要取决于箱形桥的混凝土水化热、干缩和环境温差三大主要因素。对于混凝土强度等级相同的箱身 ,其预制长度随箱身壁变厚而变小 ;对于壁厚相同的箱身 ,其预制长度随箱身混凝土强度等级提高而变大。  相似文献   

16.
铁路桥梁用超细粉煤灰高性能混凝土的试验研究   总被引:3,自引:0,他引:3  
我国铁路桥梁工程建设中较少掺用粉煤灰,但粉煤灰混凝土在其他工程领域的应用已经证明其具有优良的耐久性能及长期性能。在本文研究中,突破现行规范,从材性试验的角度以30%左右的超细粉煤灰(UFA)等量取代水泥配制了铁路桥梁用的超细粉煤灰高性能混凝土,并对其力学性能、部分长期性能、水化产物以及水泥石形貌等进行了试验研究。试验结果表明,混凝土早期强度主要取决于W/C和UFA掺量,而后期则主要取决于W/B和UFA掺量;通过应力-应变全曲线分析可知,UFA高性能混凝土可采用现行规范设计;混凝土干缩、抗渗、抗裂性能等均优于基准混凝土;同时在微观测试分析基础上,综合考虑施工及养护条件等因素的变异,认为在实际应用中,UFA掺量以不超过30%为宜。  相似文献   

17.
新水泥碎石基层   总被引:2,自引:1,他引:1  
详细介绍了粗集料断级配密实CBG-25的级配设计方法,7天龄期的无侧限抗压强度,得到的对抗压强度大小很少影响的级配范围,其上限为用于沥青混凝土的传统连续式密级配富勒曲线,下限为我国研究得到的粗集料中断级配。同是CBG-25,中断级配的收缩性显著小于连续式密级配。在设计抗压强度6MPa和水泥剂量7%的情况下,基层夏季通车3个月,90%多的路段无横向收缩裂缝,彻底改变了以往水泥碎石基层每隔6~10m产生一条收缩裂缝的状况。  相似文献   

18.
预应力高性能混凝土梁中超细粉煤灰合理掺量研究   总被引:2,自引:1,他引:1  
对粉煤灰高性能混凝土的早期抗压强度、劈裂抗拉强度、早期弹性模量、钢筋握裹力、抗剪强度和徐变性能,超细粉煤灰的合理掺量和护筋性,高性能混凝土模型梁的疲劳性能等进行试验研究。结果表明:一定掺量的优质粉煤灰可改善混凝土的性能,降低结构的寿命周期成本;铁路预应力梁中超细粉煤灰(UFA)的推荐掺量为25%。6片32mC50超细粉煤灰高性能混凝土试验梁的静载试验结果表明,其各项性能指标满足铁路《桥规》要求。  相似文献   

19.
水泥土受力性能试验研究   总被引:8,自引:1,他引:7  
针对深港西部通道工程中涉及的三种不良地层软土,选用两种水泥固化剂及多种特定的水泥添加剂,进行水泥土配比及室内无侧限抗压强度的试验研究。结果表明:水泥土无侧限抗压强度随着养护龄期及水泥掺量的增大而增大,并呈现很好的相关性,因此,可通过水泥土早期强度预测后期强度;采用硅酸盐水泥比普硅水泥加固效果更好,在相同掺入量的情况下,前者的90天强度比后者高出21%~44%;对本工程含有机质的软土,在掺加少量FDN-5等外加剂和15%的水泥后,水泥土强度大于1.2MPa,可以满足工程要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号