首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
概述了软土地层盾构隧道纵向沉降引发的各种问题,分析了有关隧道纵向沉降方面的主要研究成果.其中包括各种软土隧道纵向结构的理论解析分析模型,土隧道结构共同作用的解析模型等.在介绍目前研究不足的基础上,指出需要通过相似程度更高的模型试验、更多的现场实测数据、与实际土层性质更吻合的地基模型,进一步研究软土地层盾构隧道的纵向沉降特性、纵向结构性能.  相似文献   

2.
依托飞凤山隧道工程,采用数值模拟方法研究了列车动荷载作用下硅藻土地层隧道基底微型钢管桩加固前后的动力响应特性,并引用经验公式预测了隧道长期沉降。结果表明:基底加固前后,列车动荷载作用下隧道结构振动加速度响应峰值均依次为仰拱>墙脚>拱顶>拱肩>边墙,动位移响应峰值均依次为仰拱>墙脚>边墙>拱肩>拱顶;采用钢管桩加固后,隧道结构振动加速度和动位移响应程度都得到明显控制,仰拱处的振动加速度响应峰值和动位移响应峰值分别减小了14.46%和30.58%;硅藻土地层隧道车致长期沉降主要发生在运营期前两年,钢管桩加固基底可有效减少隧道长期沉降。  相似文献   

3.
盾构隧道施工诱发地面沉降的影响因素较多,但主要因素可归结为地层损失引起的地层变形。基于现有地层损失的理论,对引起地层损失的注浆过程进行模拟,依此研究复合地层盾构隧道施工对地层沉降的影响。研究结果表明:隧道贯通时,土体最大沉降和隆起区域分别位于隧道拱顶和拱底;浆液的硬化会对地表和拱顶的沉降速率产生影响,当浆液弹性模量达到最终硬化的75%时,地表和拱顶的沉降速率达到最大值并开始逐步减小;地表和拱顶沉降随浆液的逐步硬化而趋于稳定,且拱顶沉降趋于稳定的速率更快。  相似文献   

4.
研究目的:模型试验是研究隧道工程问题的一个重要手段,为分析软土地层隧道长期沉降的主要原因,本文以宁波地铁1号线一期工程为研究背景,在考虑其地质及工程条件的同时,采用离心模型试验模拟淤泥质黏土和砂土的长期沉降,同时考虑隧道下卧层土层含水率变化、盾构管片不渗漏水和渗漏水对盾构隧道长期沉降的影响。研究结论:(1)盾构隧道下卧层含水率对工后地层沉降影响很大,土层含水量不同,隧道的长期变形可表现为上浮或下沉;(2)处于淤泥质黏土层中的隧道后续沉降不易稳定,砂土有漏水时,隧道的长期变形主要表现为沉降,且沉降稳定的时间较快;(3)利用对数曲线模型推求的沉降预测值与离心模型试验所得的工后沉降值进行对比,两者沉降值基本一致,对数曲线预测模型可为实际工程建设提供技术参考。  相似文献   

5.
研究目的:以地铁区间盾构隧道工程为对象,采用三维有限元法分析盾构隧道修建对临近拱桥桥墩位移和结构内力的影响,并与无加固工况的计算结果进行对比,论证采用旋喷桩加固地层的效果.研究结论:计算表明在不加固情况下,隧道修建将对桥墩沉降和拱结构内力产生显著影响.采用旋喷桩对地层进行加固后,桥墩沉降能够得到较好控制,其中最大沉降和最大不均匀沉降比无加固情况分别减少了38%和44%.同时隧道修建对拱桥结构内力的影响也得到显著降低,与无加固工况相比,结构内力降低25%~40%.该加固方法能够保证盾构隧道修建时拱桥结构的安全性.  相似文献   

6.
饱和软土地层中的地铁盾构隧道,渗漏水是主要病害之一,也是引起隧道长期沉降的主要原因。以南京地铁某区间隧道为例,首先利用有限元软件ADINA中的渗流场计算得到不同渗漏位置(拱顶、拱腰和拱底)渗流达到稳定时的静水位分布情况;再将渗漏前和渗流达到稳定时相应的静水位的变化量从渗流场中导出,将其代入结构场进行隧道沉降计算,得到软土盾构隧道渗漏引起的沉降量和沉降时程曲线,并探讨了不同渗漏点位、不同下卧土层及埋深条件下隧道局部渗漏对长期沉降的影响规律。  相似文献   

7.
针对西安地铁1号线某区间隧道典型性黄土地层和上下台阶施工方法,通过数值计算和解析计算两种方法,并结合地表沉降监测,分析了数值计算中变形模量的合理取值范围,以及Peck公式中参数取值范围.研究结果表明:利用数值方法计算地表沉降最为关键的影响因素是变形模量.结合实测监测数据,西安地铁典型地层土的变形模量取1倍压缩模量较为合...  相似文献   

8.
研究目的:岩溶地区侧方基坑桩基施工及土方开挖过程中,浅埋明挖箱型地铁隧道结构出现突发沉降,尤其是变形缝部位沉降显著,本文通过箱型地铁隧道沿线及变形缝两侧的位移监测数据,分析隧道结构突发沉降产生的原因,并研究了浅层回灌水、深层回灌水和注浆加固等沉降控制措施的效果。研究结论:(1)支护桩施工诱发浅埋箱型隧道最大累计沉降为3. 3 mm,应重视其在岩溶地区的施工影响;(2)嵌岩工程桩施工揭露溶洞,承压岩溶水突涌桩孔,是侧方浅埋箱型地铁隧道结构突发沉降的主要原因;(3)浅层回灌水可短时间内使地层补水,抬升隧道,抑制隧道急剧沉降;长期实施深层回灌、桩基泥浆护壁施工,可维持地下水位,控制侧方隧道沉降,但存在深层回灌水可能通过岩溶裂隙或通道进入溶洞,降低回灌水补充效率的问题;(4)"双排桩+对拉钢绞线+对称开挖"有效控制隧道的最大水平位移为3. 0 mm;(5)箱型地铁隧道周围进行垂直和斜向钻孔注浆可起到加固和止水的效果,考虑到变形缝的敏感性,应实时控制注浆压力;(6)该研究成果可供类似岩溶地区浅埋箱型地铁隧道侧方基坑工程参考。  相似文献   

9.
研究目的:通过建立三维有限元模型,对土压平衡式盾构隧道掘进的施工过程进行模拟,模拟中考虑了盾构机作用、盾尾空隙及注浆的影响、后方台车重量等因素,并采用了位移控制的求解方法.该计算模型可以用于探明地表或地中位移的大小和分布情况,以及地层移动随盾构机掘进的动态变化规律.研究结论:盾构掘进时地表沉降主要在盾构机前方1D到盾构机后方2D的范围内产生,随着埋深的增加,地层受盾构机的扰动也大.盾尾空隙的存在是造成地层移动的主要原因.盾构掘削面到达前,地表将沿着盾构机推进方向产生移动,该移动在盾构通过时受地层沉降的影响会先减小后增大,并在隧道建成后出现最终的最大值.  相似文献   

10.
以南京地铁5号线下穿3号线为例,采用ABAQUS软件建立四孔交叠隧道的三维有限元模型,计算列车动荷载作用下的土体动应力,并结合经验模型预测交叠隧道的长期沉降量.结果 显示,交叠隧道最大沉降量达16.3 mm,曲率半径为13589 m,相对变曲为1/1100,均超出规范要求,须采取沉降控制措施.现场拟在5号线隧道施工期采用壁后注浆加固措施.结果 显示,采用地层加固措施后运营期交叠隧道的最大沉降量降低至10.4 mm,曲率半径增大至18750 m,相对变曲减小至1/2575,均满足规范要求.地层加固措施可有效控制隧道交叠区沉降的发展,保障隧道结构长期服役性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号