首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 979 毫秒
1.
高原低气压对120阀部分试验标准的影响   总被引:4,自引:0,他引:4  
王振宇  魏伟 《铁道车辆》2005,43(5):10-11,29
以单阀试验统计数据为依据,利用单阀试验台性能仿真系统,寻找各种范围的边界阀,并预测边界阀在高原低气压务件下试验性能的变化;仿真计算出在高原务件下单阀试验性能指标的分布规律,并预测在平原试验合格的阀在高原环境下试验不合格的发生概率,为制定高原地区单阀试验标准提供参考。  相似文献   

2.
高原低气压环境下列车制动能力预测   总被引:3,自引:0,他引:3  
魏伟  王培强 《铁道车辆》2005,43(12):8-12
利用空气制动仿真系统预测了平原大气压和高原低气压条件下的空气制动系统特性及大气压对紧急制动和常用制动下制动距离的影响。  相似文献   

3.
通过利用高原环境模拟舱对高原低气压下制氧系统的性能研究,得出了大气压力对制氧机流量和氧体积浓度的影响规律。  相似文献   

4.
缩短120阀试验时间的标准与方法探讨   总被引:1,自引:1,他引:0  
利用气体流动理论建立的WK-120型试验台和120阀试验系统仿真程序,分析了初充分试验条件下合格阀充气曲线的范围,找到了合格阀的最快与最慢副风红和加速缓解风缸充气曲线,提出了缩短初充气试验的3种试验方法和试验标准,为缩短试验时间、修订120阀试验台试验标准和试验方法提供依据。  相似文献   

5.
针对705试验台和新120试验台试验标准的等效性问题,使用120阀试验台仿真系统,对两种试验台的缓解阀通量试验进行了仿真计算。结果表明,就通量试验的制动缸充气时间比较,705试验台标准较新120试验台标准更快,两个标准在较大范围内重叠,但是705试验台上制动缸充气时间在2.55 s以下的合格阀,在新120试验台上不合格,同时在新120试验台上制动缸充气时间介于3.09~4 s的合格阀,在705试验台上不合格。两种试验台的试验标准不完全等效,该工作为统一试验台的标准提供参考。  相似文献   

6.
铁道部新制动规则颁布实施,其个别标准在运用中可能不完善需要加以修订。利用试验与仿真相结合方法,在验证仿真结果可靠基础上寻找到705试验台临界阀,并仿真了该边界阀在120试验台上的性能,找到了2种试验台等效标准。结果表明120试验台缓解试验标准比705试验台宽松,建议将120试验台缓解时间标准调整为3.5~4.6s,以减少120阀在运用中正常缓解时发生故障的概率。  相似文献   

7.
快速货车采用104型阀制动系统能力的预测   总被引:2,自引:0,他引:2  
根据104型阀原理和空气流动理论,建立了带104型阀的列车空气制动系统仿真模型,并开发出列车制动系统仿真程序,利用该仿真程序可以预测快速货车使用104型阀的制动系统性能。  相似文献   

8.
介绍了城轨车辆架控制动系统单阀试验台的工作原理、系统组成和部分试验功能。该试验台可以对架控系统单阀的气密性、常用制动性能、紧急制动性能、紧急时强迫缓解性能、常用时强迫缓解性能和防滑阀动作性能等参数进行检测。  相似文献   

9.
从理论上分析了青藏铁路低温、低气压的环境对制动系统的影响,并以试验数据验证理论分析的正确性,为青藏铁路制动系统的安全运用提供参考。提出应通过进一步试验获得适合高原铁路制动操纵方法的建议。  相似文献   

10.
基于AMESim的120紧急阀的建模及仿真分析   总被引:1,自引:0,他引:1  
120紧急阀是保证货运列车紧急情况下行车安全的重要部件,采用AMESim仿真软件对其进行了仿真分析.通过对120紧急阀工作原理的分析,建立了120紧急阀在AMESim仿真环境下的仿真模型,并对其初充气、紧急灵敏度及排气性能和安定性进行了仿真分析.通过仿真结果与试验对比分析,仿真曲线与试验曲线较吻合,证明仿真模型的正确性.  相似文献   

11.
根据空气流动理论和KZ1型控制阀(KZ1阀)的工作原理,建立使用KZ1阀的列车空气制动系统仿真模型,并开发相应的列车空气制动仿真系统,对KZ1阀置于快速及普通位时单车的制动、缓解和紧急制动进行仿真。与试验结果对比表明,仿真模型能够较好地模拟单车制动性能。对KZ1阀应用于时速160 km快速货车的列车制动特性进行仿真分析可知,KZ1阀在快速位时的列车制动性能与104型控制阀接近,在普通位时与120型控制阀接近;KZ1阀在制动、紧急制动时性能较好,但是在缓解时波速过低,初步分析是由于副风缸容积过大所致。因此,使用KZ1阀的车辆与使用其他型号控制阀的车辆混编时,可能会发生缓解传播不连续的问题。  相似文献   

12.
列车空气制动系统仿真的有效性   总被引:11,自引:0,他引:11  
魏伟 《中国铁道科学》2006,27(5):104-109
根据气体流动理论建立货运列车空气制动系统模型,概述管路内气体流动方程、制动系统中用到的各种边界方程和容器内气体压力的计算方法。利用基于气体流动理论开发的列车制动仿真系统,计算长、短编组列车的常用制动、缓解和紧急制动特性,并与试验结果进行对比。结果表明,计算得到的列车管、制动缸、副风缸、加缓风缸等的空气压力随时间的变化与试验结果非常接近,说明基于气体流动理论的空气制动仿真系统能够很好地模拟制动系统中气体流动和阀内动作过程。该仿真系统可以模拟最多4台机车组成的组合列车,不仅能仿真制动系统动态压力变化过程,而且其计算结果可以用于制动距离的计算,并通过数据传送实现列车纵向动力学分析程序的无缝连接。  相似文献   

13.
采用我国干线铁路开行的复兴号动车组,基于计算流体力学软件Fluent,对高速列车以350 km·h^-1速度通过840 m全封闭声屏障及1/2跨和1/4跨会车工况下声屏障的气压荷载分布规律进行数值模拟。结果表明:会车工况下的压力极值均大于单车工况下,且变化规律更为复杂,声屏障中间位置即1/2跨会车时的压力极值达到最大值,最大正压和负压分别为2 672和4 619 Pa,分别为单车工况下的2.05倍和1.87倍;同一截面各测点的气压荷载波动规律相似,但压力极值存在明显差异;单车工况下,声屏障同一截面上不同测点处的极值压差达到0.6 kPa,体现了压力波传递的三维效应。通过数值模拟获得的全封闭声屏障压力极值和气压荷载分布规律,为声屏障结构设计提供理论依据。  相似文献   

14.
2种单阀试验台初充气试验仿真比较研究   总被引:3,自引:0,他引:3  
魏伟 《铁道车辆》2007,45(9):4-7
利用空气制动仿真软件仿真分析了120阀在705试验台和120阀试验台上的初充气试验过程。结果表明,2种试验台初充气试验标准不完全等效,副风缸初充气试验时,705试验台较120阀试验台严格,而加速缓解风缸初充气时,120阀试验台较705试验台严格。  相似文献   

15.
针对EP阀轴对称的结构特点,建立有限元分析模型。考虑电磁材料非线性及漏磁因素的影响,采用微分标量势法(DSP)对旅客列车电空制动系统中EP电磁阀三维静态性能进行仿真分析。结果表明,电磁阀的安匝数、工作气隙、非工作气隙等设计参数是影响电磁阀性能的主要参数。额定电流为450 mA、线圈匝数为3 200、工作气隙和非工作气隙分别为2 mm和0.2 mm时,EP阀各项性能最优。为了减小加工工艺对EP阀工作性能的影响,磁铁和阀罩的同轴度应控制在8级,铁芯外径表面粗糙度应抛光至0.8μm。试验表明按照仿真方法设计的EP阀,其各项性能指标均达到了设计要求。  相似文献   

16.
长大列车空气管系充气特性数值仿真研究   总被引:11,自引:5,他引:6  
应用现代流体动力学数值计算方法,以长大货物列车空气制动管系的充气特性作为研究对象,研究列车编组辆数、管系组成、管系泄漏等因素对列车管充气压力的影响和沿列车管长度方向的充气压力分布情况。建立了考虑列车管泄漏的连续性方程,给出一种求解压力速度耦合方程的显式有限差分算法。将计算结果和国内外长大列车充气特性的有关试验数据进行对比分析。研究工作为长大列车制动作用的试验研究提供理论参考,并为研制完整的货物列车空气制动系统奠定了基础。  相似文献   

17.
介绍了120紧急阀透明工装试验的情况,并对紧急阀膜板在受力时的变形情况进行了分析;通过更换橡胶膜板、紧急阀上盖和改变储存温度进行对比性能试验,确定了影响紧急阀性能的主要因素。  相似文献   

18.
120阀加速缓解作用影响列车的缓解波速,某厂装用120阀的L70型车在试制中发生多起空车位时的加速缓解作用不良现象。从120阀作用原理出发,结合L70型车整车空气制动系统的配置,通过试验对该型车加速缓解作用不良原因进行分析,认为制动系统下游管路的容积增大及大容积降压风缸分流作用显著,造成制动缸压力变低后缓解时未能形成足够的背压打开加速缓解阀逆流通路,从而出现空车位加速缓解作用不良的现象。  相似文献   

19.
魏伟  刁亮 《铁道机车车辆》2007,27(B10):142-145
基于F8型空气制动机的原理和空气流动理论,建立了使用F8型空气制动机的列车制动系统模型,开发出计算机仿真程序。通过比较仿真与试验结果的缸、管压力与制动距离,证明程序的正确性。并使用仿真程序对使用F8型空气制动机的快运货物列车进行制动性能分析计算,计算结果显示快运货物列车各种制动性能正常,紧急制动距离符合《中华人民共和国铁路主要技术政策》中的有关规定,能够在规定距离内安全停车。F8型空气制动机可以作为快运货物列车的制动控制系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号