首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
支撑轴力作为地铁深基坑施工监测的主要监测项目,是考察基坑自身安全状况的重要指标。针对目前混凝土支撑轴力监测值与实际情况差异较大的问题,分析造成混凝土支撑轴力监测值偏大的原因。利用光纤传感技术,在混凝土支撑纵向主筋肋槽上胶粘封装光纤光栅传感器(FBG),通过监测钢筋的应变推算出支撑梁的内力。在现有计算公式的基础上提出考虑混凝土收缩、徐变、应力应变关系非线性影响的轴力修正公式,对监测数据进行修正。以某市地铁深基坑为例,验证了光纤传感轴力监测技术及轴力修正公式的有效性。结果显示,FBG与钢筋计轴力曲线变化趋势一致,FBG考虑了温度补偿,监测值较钢筋计更加稳定;对轴力监测值进行修正,修正后的轴力值约为修正前的1/3,结果更加符合实际。  相似文献   

2.
苏州地铁超宽超深基坑工程监测与分析   总被引:1,自引:1,他引:0  
介绍了苏州地铁东端头井超宽超深基坑工程的支护设计、施工和监测方案,重点分析支护结构的水平变形、支撑轴力的变化规律、基坑周围地表沉降以及地下水位变化情况.监测结果表明,工程设计方案的实施和施工过程中的信息化控制技术有效地保护了基坑周边的环境.  相似文献   

3.
研究目的:舟山沈家门海底隧道南岸深基坑最大开挖深度14.8 m,采用SMW工法桩和混凝土、钢管支撑围护,为浙江省内最深的临海沉管隧道基坑,周边环境极为复杂。本文对临海深基坑施工过程中的支护结构内力和水土压力进行实测分析,为类似工程提供宝贵经验。研究结论:(1)随着土层的开挖,支撑轴力增加,而且该土层对应的支撑所受的影响最大,各道支撑轴力的大小表现出不均匀性;(2)围护桩弯矩也随基坑开挖深度的增而增加,内支撑可有效降低桩身弯矩最大值;(3)基坑开挖初期,开挖面以上的实测土压力随着开挖深度的增加而减小,基坑开挖后期,土压力随着施工的进行渐渐增加,较深土层的土压力变化比浅层土层的土压力变化要滞后;(4)随着施工的进行,孔隙水压力先减小后稳定,孔隙水压力变化与基坑开挖及降水紧密相关;(5)本研究成果对于邻近海岸沉管隧道深基坑施工及设计具有参考价值。  相似文献   

4.
结合郑州一基坑工程项目,利用分布式光纤应变传感技术监测基坑开挖过程中及开挖后排桩预应力锚杆复合土钉支护体系中土钉的轴力。在试验基础上,利用ABAQUS有限元分析软件建立排桩预应力锚杆复合土钉支护体系的三维基坑开挖模型,研究土钉在复合支护体系中的作用。结果表明,这种复合支护体系中土钉和预应力锚杆能很好地协同工作,充分发挥二者锚固和支护的作用。排桩能有效降低土钉的轴力,显著改善预应力锚杆复合土钉支护结构的整体受力状态。  相似文献   

5.
软土深基坑施工期变形具有明显的时空效应,以宁波软土地区相连深基坑为工程背景,对软土地区相连深基坑开挖的时空效应开展研究。基于基坑施工过程中地表沉降、地连墙水平位移、支撑轴力的监测数据,分析施工工序、开挖深度等因素对不同位置处基坑结构与土体的变形影响,并通过有限元软件对2基坑同时开挖的情况进行计算讨论。研究结果表明:采用2个基坑单独开挖的顺序,在一个基坑开挖时,已完成的地连墙或已封顶的车站结构将对这一侧的地表沉降和地连墙水平位移有较好的约束作用;地表沉降与地连墙水平位移在基坑长边上的值大于端头部分,且这2个变形值具有明显的深度效应,即随着开挖深度的增加,变形值增加更快;支撑轴力的变化主要受开挖土体的位置影响,越近的土体开挖,支撑轴力增加越大;若采用2基坑同时开挖的方式,控制中间部分地连墙的变形将是重点,施工安全也面临较大挑战。  相似文献   

6.
深基坑开挖和支护是岩土工程领域研究的热点和难点,如何有效控制基坑变形使工程既安全又经济,是近年来不断探索的重点。本文采用PLAXIS有限元计算程序,对厦门某地铁车站基坑开挖过程中,邻近既有边坡对车站基坑的影响进行了有限元分析,得出了分步开挖各个阶段基坑的位移变形规律。结果表明:有限元模拟能够对工程实际起到一定的指导作用;当基坑一侧存在既有边坡时,基坑开挖会产生一定的偏载效应,基坑可能会整体向既有边坡侧整体滑移;基坑支护过程中采取一定的工程措施后,能够有效的控制基坑的变形。  相似文献   

7.
软土区地铁深基坑开挖围护结构中,TRD型钢水泥土搅拌墙使用越来越广泛,由于其为两种刚度相差较大材料的组合围护结构,TRD型钢水泥土搅拌墙的承载及变形机理与传统的连续墙差别较大。软土地区基坑工程,在支护结构设计及施工过程中,由于土体性质、荷载条件、施工环境的复杂性等因素,传统的钢支撑轴力在开挖过程中损失较为严重,伺服钢支撑作为轴力补偿的一种有效措施,在地铁深基坑支护结构中得到推广应用。宁波钱湖南路地铁站深基坑采用了TRD型钢水泥土搅拌墙作为围护结构,同时采用伺服钢支撑轴力补偿系统作为内支撑,对比分析实测围护结构水平位移,结果表明TRD型钢水泥土搅拌墙与伺服钢支撑轴力补偿系统作为内支撑的结合,可以较大减小围护结构最大水平位移。研究结论为软土区地铁深基坑开挖支护提供了设计、施工、安全控制等参考。  相似文献   

8.
研究目的地铁基坑工程由于受多种因素的影响,已成为岩土工程中的重点和难点。为确保基坑安全,除了对深基坑的围护支撑设计和施工方案充分论证外,另一个重要方面是制定出周密而又系统化的基坑监测及周围道路管线、相邻建筑物的监测方案,实行信息化施工,即以监测数据指导施工。研究方法结合天津地铁1期工程营口道地铁站深基坑施工,通过全面应用监控量测技术,对地铁深基坑施工过程中的维护结构进行监测,掌握支护结构和周围环境的动态,使整个深基坑过程都处于安全可靠控制范围之内。主要介绍了深基坑变形监测的内容、监测点的布设、数据观测等,通过深基坑变形监测的实施及监测成果的分析,得出了必须依靠变形监测的动态信息反馈来保证深基坑施工安全和优化设计,在此基础上提出了相关的施工技术措施。信息化施工技术在天津地铁1号线得到广泛应用并且收到了良好的效果。研究结论在基坑施工过程中,需要根据现场的实际工程地质条件及选择的支护型式、建筑物的安全等级,对支护结构的变形进行监测和严格控制,对于地铁深基坑必须进行信息化设计和施工,以便在施工中通过加强监测及时反馈信息,修改调整施工方案,使施工始终处于安全可控状态。基坑开挖过程中,必须加强监测,对监测成果进行及时、准确的分析,以确定支护系统的安全系数,进而对原有设计方案进行评价,在准确分析的基础上,提出对策,确保施工安全。  相似文献   

9.
预应力钢支撑是深基坑变形控制的重要手段之一,但传统钢支撑施工、监测技术由于自身的缺陷,无法满足实时、有效控制基坑变形的要求。以某邻近既有地铁线的基坑工程为背景,采用有限元数值分析方法定量分析了钢支撑预应力对深基坑围护桩变形的影响。介绍了一套自适应支撑系统施工技术,对其在本基坑工程中的应用效果进行了分析。研究结论表明,支撑预应力损失对基坑变形有较大影响,与支撑无预应力时的桩体变形值相比较,支撑施加设计预应力时的桩体变形值减小约40%;自适应支撑系统对深基坑施工的变形真正实现了动态、实时及昼夜不间断的监测与控制,可解决基坑开挖过程中邻近既有地铁线路变形控制难题。  相似文献   

10.
软土地区基坑开挖时,对基坑变形控制要求较高,越来越多的基坑工程采用钢支撑伺服系统进行支护。为探究钢支撑伺服系统在基坑变形中的控制效果,文章基于软土地区某基坑工程,选取钢支撑伺服系统支护典型断面,依据现场监测数据分析深基坑围护结构的变形规律。监测数据分析结果表明:各道钢支撑轴力随开挖深度的增加而增大,基坑开挖期间支撑预加轴力维持在设计预加轴力附近,伺服段土体最大深层水平位移较普通段小36.6%。在软土地区,钢支撑伺服系统对基坑围护结构变形有较好的控制效果,针对围护结构变形要求较高的基坑,可以积极采用钢支撑伺服系统。  相似文献   

11.
结合洛阳地铁1号线武汉路站深基坑半幅盖挖法施工过程,对支护结构和周边建筑变形进行监测分析,结果表明,半幅盖挖法所形成的不对称结构使基坑两侧地连墙水平变形和地面竖向变形特征均有不同;基坑明挖侧地连墙的水平位移较为一致,而盖挖侧的变化无一致规律性;地连墙水平位移最大值出现在基坑开挖底面以上0.22~0.42 H处,未出现在基坑开挖深度以下;盖挖侧地面变形量和附近建筑的竖向位移小于明挖侧,说明盖挖侧顶板对周围变形有抑制作用;基坑周边的施工荷载对围护结构的变形特征、混凝土支撑的轴力等均有明显影响,因此施工过程中应严格控制基坑周边出现超载。  相似文献   

12.
软土地区基坑支护施工与监测实例分析   总被引:3,自引:1,他引:2  
结合杭州地区深基坑支护工程施工与现场水平位移、支撑轴力以及沉降监测实例,探讨了深基坑工程支护的设计施工方法,监测数据控制,以及土方开挖时遇到问题的解决,对指导类似工程施工具有一定意义。  相似文献   

13.
以兰州市某地铁车站深基坑为例,研究第三系富水半成岩砂岩地层条件下桩撑支护结构深基坑的变形规律。通过对围护桩体水平位移、钢支撑轴力、地表沉降等实测结果进行分析,对基坑开挖过程进行数值模拟,将数值计算结果与实测结果进行对比研究基坑的变形规律。监测结果与数值分析表明:桩体变形呈现出两头小中间大的"弓型"变形特征,围护桩水平位移最大值发生在开挖面附近;正常施工下地表沉降形态为凹槽形,若围护桩间出现明显漏水、漏砂现象时为三角形;钢支撑轴力跳跃上升并在其下一道支撑架设后受力达到最大;深大基坑工程采用钻孔咬合灌注桩作为围护及止水结构时,必须确保桩体垂直度,保证桩体施工质量达到设计要求;数值计算结果与实测结果基本一致,数值模拟可为基坑的设计和施工提供依据。  相似文献   

14.
本文对大唐东营2×1 000 MW新建工程厂外循环水管道建筑工程深基坑的施工过程进行阐述。通过采用管井及轻型井点降水、挂网喷砼支护等方式,完成了富水条件下的深基坑开挖。对施工的要点及细节进行了介绍,详细计算了管井及轻型井点相关技术参数,并结合施工现场实际对理论技术参数进行优化、调整。采用两种降水方式相结合的途径加快了深基坑降水速度,避免因单一降水方式的缺陷导致降水效果不理想而影响基坑开挖;开挖完成的基坑边坡采用挂网喷砼方式及时进行支护,提高了基坑边坡的稳定性,避免了边坡与外界直接接触,防止边坡因风蚀、雨水冲刷等不利因素而出现失稳、坍塌等恶劣后果;优化了施工工艺,工程安全得到了保障,取得了良好的经济效益及质量保证,为类似工程的施工提供参考。  相似文献   

15.
通过对杭州市秋涛路地铁车站深基坑工程钢支撑轴力进行监测,分析了基坑在施工过程中轴力的变化规律。分析结果表明:在基坑开挖过程中,每道支撑架设后其轴力一般是逐渐增大,当其下的一道支撑开始受力时该道支撑轴力达到最大值,并随着各道支撑间的应力调整逐渐趋于稳定,部分支撑轴力的最大值出现在回筑阶段换撑的过程中。标准段除第1道支撑设计偏于不安全外,其它各道支撑实测轴力最大值约为设计值的20%~70%,各道支撑竖向间距设计不合理;端头井支撑实测轴力最大值约为设计值的30%~50%,设计值偏于保守,远小于设定的警戒值。  相似文献   

16.
研究目的:以邻近宽大深基坑的拱形构筑物的变形控制为目的,通过地层结构模型与荷载结构模型的计算分析,针对邻近拱形构筑物选择合理的保护措施和深基坑支护体系。研究结论:通过监测资料表明,针对航站楼斜拱桩基础的位移控制取得较为明显的效果,深基坑工程也处于安全稳定状态,从而验证了设计的合理性与安全性。针对邻近构筑物的保护措施中,地基加固能有效减小土体的压缩变形,对控制构筑物变形效果显著,隔离桩能适当降低水平推力向基坑支护体系的传递,对控制基坑变形具有明显的作用。基坑施工过程中建立全面、严密的监测体系是完全必要的,通过及时的监测信息反馈指导施工,不仅保证了基坑自身的安全稳定,还可对周边环境影响进行有效控制,减少施工对航站楼斜拱基础等周围环境的影响。  相似文献   

17.
为了研究成都地区典型膨胀土深基坑的支护参数,采用现场调研、室内试验、数据分析和现场监控量测等方法,以成都地铁17号线二期东延伸段威灵站深基坑工程为例,开展膨胀土的自由膨胀率、无荷载膨胀率及膨胀力等胀缩变形力学特性研究。结合现场施工监控量测分析,研究了各施工步骤下基坑的支护桩水平位移、断面支撑轴力和地面竖向位移的情况。研究结果表明:(1)该地区膨胀土主要分布在地下5~10 m深度处,主要为弱膨胀土,自由膨胀率在50%以内;(2)试验土样的无荷载含水率与含水率有较大的关系,遇水后的无荷载膨胀率随着土样含水率的增加而降低;(3)随着土体含水率的增加,试验土样的膨胀力呈线性降低趋势;(4)随着基坑的开挖,支护桩的水平位移逐渐增大,其主要发生在第1道支撑和第3道支撑之间,桩体主要向基坑内侧偏移,少部分向基坑外侧偏移;(5)支撑轴力出现过大的现象,当开挖至轴力监测点ZL32-3支撑位置时,ZL32-1测点处的支撑轴力超过设计值约50 kN;(6)从地面竖向位移监测结果来看,该工程深基坑开挖支护设计总体可控。  相似文献   

18.
成都某地铁车站深基坑位于砂卵石地层中,周围各类建筑物和生命线工程密集,对施工变形控制要求严格.通过基坑围护桩测斜数据分析围护桩的最大变形、相应位置及其与支撑施作时间的关系,通过数值模拟研究围护桩在基坑开挖过程中的应力应变特征.研究结果表明:选择护壁桩加三道横向支撑作为围护体系能满足安全施工要求;基坑阳角部位、基坑轮廓长边中点部位、各围护桩的桩体中部应重点加强施工监测和支护;第二次和第三次开挖时段,基坑塑性区部位最小主应力分化明显,局部甚至出现拉应力,应加强观测.  相似文献   

19.
以无锡地铁河埒口站基坑监测为例,研究了长标距FBG光纤传感技术在地铁基坑施工应变及变形监测中的应用,并结合现场施工情况对监测数据进行分析.结果表明,分布式布设光纤传感器可较准确地监测地下连续墙在开挖过程中的水平变形,并能对周边建(构)筑物的变形状态及安全状态进行有效监控.在施工过程中可根据监测结果,适当调整施工参数,为安全生产提供保障,并确保后续安全顺利施工.  相似文献   

20.
深基坑支护结构变形预测研究与应用   总被引:2,自引:2,他引:0  
利用现场监测的深基坑支护结构变形信息资料 ,结合参数优化反分析土体m值 ,根据现场地质资料和优化后的参数 ,通过有限元计算对深基坑支护系统进行变形预测 ,及时调整开挖方案和支护参数 ,此方法可以有效的指导基坑施工 ,确保施工安全  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号