首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 743 毫秒
1.
车轮辐板除锈机是清理车轮辐板表面锈蚀作业的重要工装设备,车轮辐板除锈作业是车轮辐板裂纹检查作业的前道工序,车轮辐板表面除锈质量直接关系到探伤作业有效进行。  相似文献   

2.
随着铁路运输向高速重载方向发展,机车车辆出现大量的车轮辐板孔裂纹,导致车轮崩裂,严重影响铁路运输安全。由于车辆运行中车轮表面极度污染,常规无损检测方法不能有效检测辐板孔裂纹。经多年研究试验,采用脉冲电磁技术成功解决了车轮辐板孔裂纹检测难题,辐板孔表面不需打磨即可探伤,检测灵敏度高,长度测量准确度好,在所试验的车轮中无漏检现象,适用于现场和野外作业。  相似文献   

3.
车轮辐板探伤的难点是车轮除锈及探伤机磁场问题,如何解决这两项难题对确保车轮探伤质量,及时发现车轮裂纹对防止行车事故的发生有着重要的意义。  相似文献   

4.
利用有限元分析软件ANSYS对重载铸钢车轮辐板结构进行了优化设计,分析了辐板圆弧半径尺寸变化对车轮重量及辐板应力分布的影响,为确定辐板圆弧半径的最佳尺寸提供了参考依据。  相似文献   

5.
840D车轮辐板孔裂纹成因的强度及疲劳分析   总被引:2,自引:1,他引:1  
采用大型通用商业分析软件Abaqus及Ansys,计算840D车轮在典型工况下的应力分布。计算分析表明:在坡道制动、机械载荷和停车制动3种典型工况作用下车轮辐板孔外侧处于受压状态,内侧处于受拉状态,而且应力幅值较大,是疲劳薄弱点;坡道制动工况与机械载荷工况的组合作用,是车轮辐板孔边产生高应力的主要因素;在相同制动工况下,车轮辐板孔边应力随着轮辋厚度的减小而增大,随着辐板孔向轮辋偏移量增大而增大;机械载荷工况与坡道制动工况的组合作用是导致各种车轮辐板孔疲劳裂纹萌生的主要原因;机械载荷工况与停车制动工况的组合作用对车轮辐板孔边萌生疲劳裂纹的影响相对较小。  相似文献   

6.
本文利用数值方法分析地铁车轮辐板安装刹车盘对其声辐射特性的影响。数值分析中,首先根据某新型地铁车轮的实际尺寸建立车轮的三维实体有限元模型,基于模态叠加法计算该车轮在不同激励下的动态响应。计算动态响应时考虑轮轨名义滚动圆处法向单位力、轮缘根部横向单位力和轮轨名义滚动圆处轮轨表面粗糙度等效力3种激励对地铁车轮振动特性的影响。利用有限元算得的车轮振动结果,生成声学网格速度边界条件,通过声学边界元法计算车轮的声辐射特征。分析结果表明,车轮声辐射主要来自车轮辐板轴向贡献,踏面径向贡献相比之下不显著。另外,刹车盘能起到对辐板声屏障的作用,从而衰减来自车轮辐板的噪声辐射。车轮辐板安装刹车盘后,在通过小半径曲线时,可以有效降低轮轨横向力作用下激发出的车轮轴向模态振动噪声,同时对车轮的直线滚动噪声也有一定的抑制作用。另外,刹车盘对车轮轴向辐射声场的指向性有较显著影响。  相似文献   

7.
本文介绍了一种新型的基于ISA总线控制器的通用型车轮辐板除锈机的研制方案,该除锈机可以对各种不同型号的车轮辐板进行除锈,同时提高了除锈质量,加快了除锈速度。  相似文献   

8.
基于结构有限元法,分别按欧洲铁路和日本铁路提出的车轮机械设计载荷和载荷工况,对快捷货车车轮辐板的疲劳强度进行分析。计算结果表明车轮辐板疲劳性能满足无限寿命设计准则要求,其疲劳薄弱区域位于辐板内侧面与轮毂圆弧过渡部位。  相似文献   

9.
轮轨接触点对深化分析轮对运行动态行为、安全性、轮轨接触状态及作用力等起着关键的作用。基于传统车轮辐板应力测量车轮垂向力与横向力方法,考虑车轮磨耗影响,提出一种提高识别轮轨接触点准确度的改进测试方法。通过FEM程序ANSYS软件分析沿车轮踏面不同位置分别作用垂向、横向和纵向力时,车轮辐板表面的应力分布状态。由计算结果可知,沿辐板孔横向表面的径向应力分布随作用载荷位置(接触点)呈现特定的变化规律,为测试轮轨接触点位置提供了可行性。研究表明,在车轮辐板特定区域存在着对横向力和纵向力不敏感的应力区域,可消除由横向力和纵向力引起的干扰影响。根据计算和试验结果,找出车轮上应变片识别精度最佳的布置位置、方向和测试组桥方式,针对在线测试,完善测量桥路的可靠性和抗干扰性,使测试精度更高,接触点位置的确定更准确。分析因车轮踏面磨耗与镟修导致对车轮辐板表面应力分布产生影响的问题,推导出测试修正矩阵,扩展测量识别接触点的适用范围。完成测试轮对的研制,进行线路测试,获取了多种运行条件下接触点的测试结果。  相似文献   

10.
随着货车轴重的增加,踏面制动热负荷对车轮辐板疲劳失效的影响越来越大。建立30t重载货车车轮三维有限元模型,对货车在长大坡道(坡度13‰)工况下的紧急制动进行仿真。仿真中,对比分析了分别采用热机耦合法和线性叠加法计算得到的车轮辐板应力。最后利用Haigh-Goodman疲劳极限线图评定在制动热应力和轮轨机械应力同时作用下车轮辐板疲劳强度。结果表明,采用热机耦合法和线性叠加法计算得到的车轮辐板应力几乎一致,但是热机耦合法所需时间约是线性叠加法的6倍;踏面制动条件下30t轴重货车车轮辐板疲劳强度满足要求。  相似文献   

11.
车轮温度和应力的分布对车轮寿命有重大影响。分析轮辋厚度与车轮使用年限、辐板孔裂纹率的关系。采用有限元法模拟长大坡道制动热应力和轮轨机械应力随轮辋厚度变化的规律,建立考虑轮辋厚度的辐板孔裂纹萌生时间预测模型。结果表明:坡道制动工况与机械载荷工况的组合作用是车轮辐板孔边产生高应力的主要因素;车轮辐板孔应力随轮辋厚度的减小而增大;机械应力与热应力叠加是导致辐板孔裂纹萌生的主要原因。预测的疲劳裂纹萌生时间与实际情况比较接近。  相似文献   

12.
针对国内车轮辐板除锈机少而且技术很不成熟的现状,提出一种采用工业控制计算机和传感器技术相结合的新型机械结构除锈方案.对该方案进行论述,实验证明该除锈机可以对各种型号车轮辐板进行有效除锈.采用该方案在减轻劳动强度的基础上大大提高除锈质量.  相似文献   

13.
为了探讨评价车轮辐板疲劳强度的工程方法,文章在分析现有各种方法的基础上,通过理论分析和实际计算,提出了简明适用的辐板疲劳评定方法:在轴对称车轮的有限元分析中,只需对车轮任一径向截面进行加载计算,分析所有工况下最大和最小主应力方向的应力循环,就能够找出辐板的最大动应力,进而通过Haigh形式的Goodman疲劳曲线对辐板安全性进行判断。  相似文献   

14.
朱宜尧  吴雷  任立壮 《铁道车辆》2003,41(11):40-41
1 问题的提出 为适应国民经济的发展,满足货运市场的需求,铁路货车快速化、重载化已成为当前货车发展的必然趋势.车轮故障已成为影响货车发展的重要因素,其中车轮辐板裂纹问题尤其突出.据不完全统计,轮对辐板裂纹(含辐板孔裂纹)数占轮对总数的30%左右.轮径越小的轮对辐板及辐板孔裂纹越多,并且裂纹越深越长.从材质上看,辗钢轮辐板裂纹(含辐板孔裂纹)占辗钢轮对的33.21%,占辗钢轮辐板故障的85%以上.大部分裂纹为辐板孔两端沿圆周方向的裂纹,少数为辐板孔上下径向裂纹,辐板孔裂纹占辐板裂纹轮对数量的90%以上;铸钢轮辐板裂纹占铸钢轮对的0.2%左右,其裂纹位置在辐板与轮辋的过渡处,呈圆周方向.  相似文献   

15.
对某35 t轴重机车车轮辐板形状进行优化,在曲线及道岔通过工况时,优化后的车轮辐板最大等效应力小于优化前,并且通过轮辐板优化降低了车轮质量。提出大轴重机车车轮辐板优化后形状的主要特征,为同类型车轮辐板设计提供参考。  相似文献   

16.
针对大秦运煤专线840 D车轮辐板孔裂纹情况,就坡道制动工况下从确立车轮载荷条件入手,采用有限元数值模拟机械应力及热应力,然后把计算结果叠加采用断裂力学方法,分析辐板孔边疲劳裂纹萌生和扩展的载荷条件以及裂纹的扩展速率。  相似文献   

17.
提出了一种采用工业控制计算机和传感器技术相结合的新型机械结构除锈方案。可对各种型号车轮辐板进行有效除锈。能减轻劳动强度的提高除锈质量。  相似文献   

18.
我国铁路货车车轮技术发展   总被引:8,自引:0,他引:8  
张斌  陈雷 《中国铁路》2006,(7):53-55
我国铁路货车车轮规模化生产发展历经40多年,产品趋于多样化,满足了不同时期的铁路运输需求,新产品新技术也在不断研制开发中。21 t 和25 t 轴重货车的 S 形辐板车轮,采用 LM 磨耗型踏面,设计上取消了车轮辐板孔,消除了应力集中带来的安全隐患。此外,对引进的国外铸钢车轮技术进行了优化设计,降低了车轮自重。近年来,具有完全自主知识产权的贝氏体钢车轮、新型珠光体钢重载车轮、新型超声波探伤、高洁净车轮钢工艺、车轮钢圆坯连铸工艺、抗早期剥离等一系列新材料、新技术在我国铁路贷车车轮技术中得到应用。  相似文献   

19.
吴重昆  黄伟  路爱芬 《铁道车辆》2005,43(10):32-34
阐明了货车轮对辐板抛丸除锈机的工作原理,介绍了其机械结构和自动控制系统。  相似文献   

20.
车辆紧急作用下,复杂机械和热载荷会造成车轮结构破坏失效,基于热-结构耦合理论及采用有限元数值仿真分析方法,分析其对整体式车轮结构的机械强度和疲劳强度的影响,并分析对比纯机械载荷和热-结构耦合载荷两种作用下对车轮结构强度的影响,采用单轴及多轴疲劳准则进行疲劳强度评估。结果表明:紧急制动20 s时,踏面温度达到最大151.8℃;制动热载荷是引起踏面及辐板等效应力增大的主要因素,热-结构耦合载荷比纯机械载荷辐板处产生的最大等效应力超出40%左右;多轴Dang_Van疲劳准则更适合应用于车轮辐板的评定,制动热负荷会造成局部结构疲劳强度波动较大,引起车轮的突然破坏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号