首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目前工程中隧洞受断层影响的案例越来越多,而断层与隧洞位置关系复杂,为了探讨断层位置对隧洞围岩稳定性的影响规律,本文以某圆形水工引水隧洞为工程背景,采用FLAC3D软件,用接触面单元模拟断层,探讨两种走向(平行断层和正交断层)下不同倾角断层对隧道围岩稳定性的影响。计算结果表明,在平行断层中,当断层倾角较小时,产生的塑性区较广,对洞顶围岩影响较大;当断层倾角较大时,对隧洞腰部围岩影响较大,会产生与无断层时相反的水平位移。在正交断层中,隧洞与断层相交段围岩稳定性较低;当断层倾角越小时,洞顶处与隧洞腰部处产生的位移越大,围岩稳定性越低;塑性区则随着断层倾角增大而增加,当断层倾角增大到一定值时,洞顶处与隧洞腰部处位移与无断层时位移相比,突变率较大,设计施工时应引起注意。  相似文献   

2.
当隧洞穿越高富水地质环境时,在开挖过程中容易产生渗水现象,从而给隧洞的开挖和支护带来不利影响。本文以木里水电工程输水隧洞为例,用离散单元模拟围岩及节理,采用UDEC软件进行数值分析,研究节理倾角、节理间距和洞室埋深对隧洞开挖后渗流量的影响,并对隧洞开挖前后孔隙水压力进行了分析。研究结果表明:在单组平行节理条件下,节理倾角、节理间距和洞室埋深对隧洞开挖后的渗流量都有较大影响;当节理倾角较小时,隧洞洞周渗流受节理倾角的影响不是很明显,当节理倾角超过30°时,洞周渗流量随节理倾角的增加而增加;当节理间距较小时,隧洞洞周渗流量随节理间距的增加呈近似线性增加,当节理间距超过1.5 m时,洞周渗流量基本保持不变;随着洞室埋深的不断增加,隧洞洞周渗流量也增加,当隧洞埋深达到一定值后,洞周渗流量增大的趋势变缓;节理倾角、节理间距及洞室埋深均通过改变开挖前后孔隙水压力差值影响隧洞渗流。  相似文献   

3.
运用有限元软件ANSYS数值模拟和关键块体理论,研究了两种隧道开挖方法在穿过60°,65°,70°和75°四种断层过程中的围岩稳定性问题,并与理论上存在的90°断层的开挖情况进行对比,分析了塑性区发展和顶板位移。结果表明:断层倾角对隧道围岩的稳定性有显著影响,随着断层倾角趋近于90°,隧道顶板稳定性趋好;施工顺序和方法对断层隧道的稳定性亦有显著影响。  相似文献   

4.
针对水库水的渗流对浅埋暗挖隧道开挖及后期运营的影响问题,采用数值模拟的方法,研究了在各种渗透系数条件以及隧道开挖与地下水渗流影响下的隧道稳定性。分析表明:水库水的渗透以及隧道开挖会对上覆土体的稳定性造成较大影响,甚至可能会导致坍塌事故的发生。随着隧道的开挖,水库水开始发生渗流现象,并造成围岩塑性区快速发育,其中以拱顶位置塑性区范围最大;围岩渗透性越强,隧道顶拱和拱腰部位的渗透应力越小;随着渗透系数的增大,隧道的孔隙水压力、围岩位移、塑性区范围均出现较大的增长,并可能引起隧道的渗流失稳破坏。  相似文献   

5.
研究目的:全风化红砂岩和砂质黄土互层地层在我国有较广泛的分布,其敏感脆弱的工程地质特性严重影响隧道工程建设。本文以蒙华铁路阳城隧道为依托工程进行拓展性研究,采用室内试验、数值模拟、现场监测等多种方式深入探讨岩层倾角对土砂互层地层隧道围岩稳定性的影响。研究结论:(1)随着岩层倾角增大,拱顶及左、右拱腰位移呈现互异的变化规律,且具有不同的变形机理;对于拱顶而言,45°为破坏模式转换临界,位移取得最小值43. 7 mm;根据左、右拱腰变形差异性,分为非对称变形缓慢发展区、非对称变形快速发展区、非对称变形稳定区、非对称变形弱化区和非对称变形二次发展区五个阶段;(2)拱顶及左、右拱肩处支护结构在不同地层倾角下均有较大主应力,且波动幅度较大,左、右拱肩处应力差值的变化对隧道结构会产生不同程度的影响,当倾角为60°时,两处主应力差值取得最大值1. 01 MPa;(3)随着岩层倾角变化,张拉塑性区和剪切塑性区存在不同的分布规律,实际工程中应做好相应抑变措施;(4)本研究结论可为不同岩层倾角产状下的土砂互层地区的隧道设计和施工提供借鉴。  相似文献   

6.
基于流固耦合理论下穿库区隧道围岩稳定性分析   总被引:1,自引:0,他引:1  
以某下穿库区铁路隧道为依托工程,对比分析有无渗流场作用和不同水深条件下,隧道结构应力变化规律以及围岩变形、塑性区和渗流场的变化特性,同时还考虑隧道加固圈厚度和渗透系数对围岩稳定性的影响。研究结果表明:地下水渗流场对围岩变形影响较大,不仅能引起大范围的库底沉降,而且能增大隧道拱顶和拱腰的位移,并且能够减小仰拱的隆起量以及加剧围岩塑性区的范围;隧道的开挖能够对地下水孔隙水压力的分布形成明显的扰动,并且在两拱脚处渗流速度最大,最大塑性区位于横向临时支撑处;注浆加固圈能够改善围岩的受力,隧道最优注浆圈厚度在5m,并且当渗透系数小于围岩渗透系数的1/50时注浆圈加固效果不再明显。  相似文献   

7.
PBA工法中边桩参数对结构稳定性的影响研究   总被引:2,自引:2,他引:0  
以北京地铁6号线北海北站工程为背景,采用FLAC3D数值模拟的方法,研究不同的边桩嵌入深度和边桩直径下地层沉降、边桩水平位移和洞底塑性区的规律。研究分析表明:地表沉降和边桩水平位移随着边桩嵌入深度的增加而减少;当嵌入深度一定时,不同边桩直径下对边桩水平位移的影响大于对地表沉降的影响;嵌入深度与洞底塑性区特性具有明显关系,嵌入深度小会使洞底、洞顶土体产生较大塑性区。  相似文献   

8.
运用FLAC3D,系统研究动荷载振幅、频率以及工程因素对竖向排列地下硐室群稳定性的影响,并实例分析地下硐室群在爆破震动作用下的稳定性。研究结果表明,振幅对地下硐室群稳定性的影响最明显,隔板对动荷载具有放大效应,当振幅等于0.5 m.s-1时,放大系数为1.35,放大系数随动荷载振幅的增大而增大;围岩塑性区面积也随振幅增大而增大。隔板位移量随频率的增大先减小后增大,50 Hz的高频动荷载对地下硐室群稳定性最不利;隔板最大位移量随硐室间距的增大而减小,随上方硐室跨度的增加而增大,硐室间距越大,上方硐室的跨度越小,对地下硐室群稳定性越有利。动荷载作用下地下硐室群围岩出现较大的应力集中,但最大拉应力小于岩体的抗拉强度,地下硐室群围岩不会出现拉裂破坏。结合工程实例,分析爆破震动作用下地下硐室群的稳定性,分析结果表明,沿硐室群轴线方向,洞口位移量最大,中间部分的位移量最小,这与实际监测结果一致。  相似文献   

9.
基于复变函数解法,借助Verruijt提供的保角映射公式,将含孔洞的半无限平面映射为圆环域,然后利用解析函数将圆环域内的复势函数展开成Laurent级数,并利用地表及洞周边界条件的级数展开式在圆环域上的收敛性对其进行求解,从而得到地面荷载及围岩自重作用下浅埋隧道的围岩应力场。利用该解析解研究各因素对隧道围岩稳定性影响的结果表明:当隧道埋深较小时围岩以拉—剪综合破坏为主,埋深较大时围岩主要发生边墙剪切破坏,且埋深越大剪切区的范围及半径越大;地面荷载越大,围岩产生的塑性区范围及其半径越大,且随着地面荷载的增大,塑性区沿着一定角度向地表方向扩展,容易产生地层坍塌;侧压力系数较大时,围岩以剪切破坏造成的整体失稳为主,侧压力系数较小时,围岩以拉—剪综合破坏为主,且侧压力系数越小越易发生地层坍塌。  相似文献   

10.
研究目的:榴桐寨隧道是新建成都至兰州铁路线的关键性控制工程,其围岩大变形问题十分突出,而目前对深埋隧洞围岩流变条件下的变形预测尚无成熟的计算方法。本文在总结现有围岩变形研究成果的基础上,将隧洞围岩简化为理想弹塑性介质并布设全长锚固锚杆,基于锚杆-围岩协调变形原理,分析杆体表面摩阻力及其轴力的分布规律,由静力平衡条件推导锚杆中性点处的最大轴力值,进而建立变形稳定后围岩的塑性区及松动区半径公式,从理论上确定榴桐寨隧道围岩的松动区及塑性区范围,为优化围岩支护方案及参数提供重要的技术支撑。研究结论:(1)工程实际中,围岩流变是导致深埋隧洞出现大变形的根本原因,隧洞围岩变形通常在初期锚杆支护一段时间后才趋于稳定;(2)隧洞围岩与锚杆协调变形,杆体所受正、负摩阻力的分界面即为杆体中性点,该点杆体与其周围岩体的相对位移及表面摩阻力为零,但其所受轴向拉力达到最大值;(3)通过锚杆所受最大轴力可对变形稳定后的隧洞围岩塑性区及松动区范围进行反演分析,围岩塑性区及松动区范围的大小随岩体黏聚力和内摩擦角的增加而减小,随隧洞半径的增加而增大,但受支护阻力的影响不大;(4)现场应用结果表明,基于锚杆轴力反分析隧洞围岩分区规律的方法是合理可行的,该研究成果对于类似隧洞工程的安全快速施工具有一定的借鉴意义。  相似文献   

11.
针对高地应力及高水力梯度等复杂地质环境下,深埋引水隧洞穿越组合富水断层破碎带发生突、涌水地质灾害的问题,以福建龙津溪引水隧洞为工程依托,提出基于平面一维流微分方程的引水隧洞组合富水断层控水模型涌水量计算方法,并从断层倾角和倾向2个角度考虑隧洞与断层的位置关系,从而确定模型中的3种典型平面一维流涌水模式的几何计算参数。基于隧洞与断层的空间位置关系,将计算区域划分为3个计算子区间:Ⅰ区(隧洞处于普通围岩)、Ⅱ区(隧洞处于断层影响带)和Ⅲ区(隧洞处于断层破碎带),分别对3个子区间的涌水量展开计算,并通过分段积分得到整个区段总涌水量,其中Ⅱ和Ⅲ区受断层以及高水力梯度的影响,需要考虑高速非达西修正。最后将理论计算结果与工程常用的裘布依公式、数值模拟计算以及现场实测数据进行对比,结果表明该方法计算组合富水断层隧洞涌水量具有切实可行性,且准确度较高。  相似文献   

12.
采用平面有限元数值模型分析透水衬砌、排水系统和墙脚排水3种排水形式下,无水压、衬砌水压力在均布和非均布时蛋形断面和圆形断面山岭隧道围岩的稳定性及结构受力特征。研究了衬砌水压力不同分布对隧道位移、塑性区和结构受力的影响规律,并对衬砌水压均布与非均布的结果进行了对比分析。分析结果表明:水压力的存在使隧道位移、塑性区范围和塑性应变最大值显著增加,对围岩的稳定性不利,特别是对结构受力的影响更加显著。水压力较大时,从围岩稳定性和结构受力来讲采用圆形断面优于蛋形断面。水压力不均匀分布时对围岩稳定性和结构受力均产生不利影响。  相似文献   

13.
我国西南地区崇山峻岭、地质构造条件复杂多变,岩体内部节理、片理、层理发育。隧道穿越节理发育围岩时,极易引发围岩大变形、掌子面失稳坍塌、钢架变形扭曲、初支掉块和二次衬砌开裂等工程灾害。为了分析节理对隧道围岩稳定性的影响规律,依托玉磨铁路西双版纳隧道,利用ABAQUS建立计算分析模型,得到不同节理条件下围岩塑性破坏特征。(1)节理对称分布时,节理屈服、围岩塑性应变呈现出对称分布于拱部、两侧拱肩和仰拱两侧区域的特点。(2)节理倾角较陡时,岩体性质是影响主控因素;节理倾角较平缓时,围岩发生沿节理面的剪切滑移破坏,节理是围岩整体发生塑性破坏的主控因素;当节理倾角为60°或120°时,围岩的塑性应变最大,最大塑性应变为0.197。(3)当节理倾角为90°时,围岩及节理屈服区域主要沿着节理方向垂向分布,且影响范围深入地层中。(4)2组节理条件下造成围岩塑性破坏的主要原因是节理面的塑性屈服;当节理倾角组合为60°+90°时,围岩的塑性应变最大,最大塑性应变为0.521。  相似文献   

14.
为分析小净距隧道两洞室间的空间效应,采用Midas/GTS有限元分析软件对不同纵向间距下相邻两洞室掌子面隧道围岩响应特性进行分析,得到了围岩变形规律、中夹岩柱应力变化趋势、塑性应变变化特征,并给出两洞室间合理的纵向施工间距。研究表明,隧道拱顶沉降位移在其掌子面前方10 m趋于稳定,中夹岩柱沉降位移变化规律与洞室拱顶沉降变化规律具有一致性,隧道开挖对靠近先行洞一侧的中岩柱水平位移影响较大,在纵向2 m处位移最大;掌子面间距增大会扩大先行洞塑性区分布,对后行洞塑性区分布无影响;当0.5B≤掌子面间距≤1.5B时(B为隧道宽度),中夹岩柱主应力增加较快,当1.5B≤掌子面间距≤2.0B时,中夹岩柱主应力变化不明显,合理的纵向施工间距为2.0B以上。  相似文献   

15.
新建隧道临近既有隧道时,隧道施工会引起围岩的应力重分布,从而对既有隧道产生影响。为了研究新建隧道施工对既有隧道的影响,以黄土地区某隧道工程为依托,利用有限元软件,通过数值模拟计算,分析开挖方法及支护措施对既有隧道最终位移场、应力场分布及围岩塑性区演化的影响,得出如下结论:采用台阶法时会对既有隧道产生扰动,引起既有两隧道的最大位移分别为0. 97 mm和2. 56 mm,均出现在拱顶处,总体位移较小;采用3种不同的支护措施时,最大应力均出现在距离最近既有隧道的仰拱处(不超过600kPa);塑性区主要分布在最近既有隧道的仰拱处,但不会引起塑性破坏;3种支护方案对应的整体模型最大总位移分别为80. 3 mm、77. 8 mm和89. 2 mm,管棚超前支护对变形控制效果明显。  相似文献   

16.
研究目的:深埋硬岩顺层构造由于其分层特性和结构形式的特点决定了在这样的地质环境中开挖隧道,其围岩受力之后的变形和破坏具有一定的特殊性。本文以拟建某高铁黄草隧道为例,就深埋隧道顺层硬岩组合围岩在不同岩层倾角下的开挖损伤变形开展数值模拟分析评价,主要研究不同岩层倾角下的隧道围岩变形、围岩屈服渐进性及稳定性,并给出强度折减至极限状态时硬岩组合隧道围岩的变形破坏模式。研究结论:(1)随着岩层倾角的增大,顺层硬岩组合隧道主变形从岩层弯曲变形逐渐向顺层滑移变形转变,倾角增大至一定程度时( 75°),垂直层面局部位移相对较大,在滑移变形为主的基础上弯曲变形程度加大;(2)硬岩组合的开挖引起洞室周边一定范围内的围岩发生屈服,岩层倾角变化导致围岩屈服区范围大小发生改变,倾角为30°时屈服范围最大,以此为界减小或增大倾角,屈服区均表现为不同程度的减小趋势;(3)岩层倾角存在界限值,硬岩组合黄草隧道为40°,小于或大于该值稳定安全系数均减小,10°~75°区间内稳定安全系数变化幅度最高达17%;(4)强度折减条件下,围岩破坏模式略有变化,表现为:倾角≤30°时,垂直于层面方向的位移量和破坏范围大,围岩以层裂(弯曲折断)破坏模式为主;当倾角 60°时,顺层面方向破裂范围大,但垂直层面破坏优先启动;(5)本研究成果对促进该高铁的顺利建设和今后类似工程的建设有着理论指导意义和工程价值。  相似文献   

17.
由于受地形条件限制和使用功能需要,地下工程埋深和跨度往往存在较大变化,研究覆跨比对洞室围岩稳定性影响意义重大。本文结合太沙基围岩压力理论推导表征围岩压力随覆跨比变化规律的理论公式,并采用基于网格自适应划分技术的有限元模拟方法,从地表极限承载力、位移响应、应力响应及围岩塑性区等方面,对不同覆跨比矩形洞室围岩稳定性进行系统研究。结果表明:在Ⅳ级围岩条件下,矩形洞室围岩压力随覆跨比增大而增大,当覆跨比H/D=2之后,围岩压力开始逐渐趋于稳定;当覆跨比H/D<2时,矩形洞室在极限状态下易发生贯穿至地表的垮塌破坏;当覆跨比H/D>2时,洞室拱顶上方出现压力拱效应。故覆跨比H/D=2可作为Ⅳ级围岩条件下深浅埋洞室分界线参考值。  相似文献   

18.
达成高速铁路岩溶隧道围岩稳定性分析   总被引:1,自引:0,他引:1  
结合达(州)成(都)高速铁路某岩溶隧道工程,建立岩溶隧道三维实体模型,利用三维快速拉格朗日法FLAC3D对隧道底部含有溶洞的围岩稳定性进行数值模拟研究,并将数值计算结果与现场监测结果进行比较分析.研究结果表明随着隧道施工接近并通过溶洞顶部,隧道拱顶处围岩向下变形,其值不断增大,拱腰处围岩沿隧道径向收敛,其值变化较小;仰拱处围岩最初向上变形,在隧道施工到溶洞顶部时变为向下变形,且其下沉值不断增大;围岩塑性区主要集中在隧道拱顶、仰拱底、拱腰和溶洞顶部处,溶洞顶部与隧道底部的塑性区有相互连通的趋势;隧道拱顶左右各约45°的范围、隧道底部以及溶洞周围的部位为应力释放区,拱腰处为应力增高区.  相似文献   

19.
以厦门翔安海底隧道为工程背景,基于流固耦合理论,对穿越海域风化槽段施工过程中的围岩稳定性进行数值计算,研究不同施工阶段隧道围岩位移场和渗流场分布规律及支护结构的受力特征。研究结果表明:地下水的渗流作用对海底隧道的围岩变形影响很大,引起较大范围的海床沉降;超前导洞开挖对围岩渗流场的影响作用最为直接和明显,且由渗流引起的海底隧道围岩变形在向上传递过程中折减较小;海底隧道洞周变形和海床沉降主要集中在两侧导洞下部和中部核心土上部开挖过程中;海水水位变化对海床沉降、拱顶沉降、拱底回弹量及围岩塑性区分布范围均有一定影响;注浆圈加固效果直接影响海底隧道开挖后围岩位移场和渗流场的分布,且注浆加固区厚度及渗透系数存在1个经济合理值;海底隧道拱腰横向支撑节点的应力集中较大,出现较大的塑性破坏区;海底隧道支护结构受力分为3个阶段,且拱脚、横支撑支点处受力较大。  相似文献   

20.
根据分层位错理论,以逆断层为例研究断层位错引起的地表同震变形及其影响因素;基于模拟计算不同震源参数组合下的180种地震工况,建立兼顾矩震级、断层倾角和断层埋深的适用于我国川藏地层的地表最大位移估算式;提出1种基于同震变形的隧道位错反应分析方法,并依托成兰铁路某隧道工程建立隧道位错反应分析模型,研究地表同震变形下隧道衬砌的应力应变和损伤分布,以及断层倾角、断层埋深和围岩强度对隧道衬砌损伤的影响程度。结果表明:逆断层作用下,地表同震变形不仅受矩震级影响,来自断层倾角和断层埋深的影响也不可忽略;将发震断层位错引起的同震变形场以位移人工边界形式施加于有限元模型,可以实现位错载荷的精确输入;断层位错作用下,隧道衬砌损伤程度随断层倾角的增大而减小,随断层埋深的减小而增大;对于案例隧道,围岩弹性模量从1.0 GPa增至3.0 GPa时,下盘范围衬砌的拱顶和拱腰达到损伤极限,且损伤向拱底扩展,引起损伤值突变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号