首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 337 毫秒
1.
针对列车制动实际减速度有重要影响的不确定参数,提出基于自适应参数估计的新型减速度控制模式。通过硬件在环半实物仿真试验平台进行试验验证。试验结果表明新型减速度控制算法有效提高了制动控制系统对列车运行不确定参数的鲁棒性。当实际闸瓦摩擦系数偏离制动控制系统预设值时,减速度控制器可以估计出闸瓦摩擦系数的实际值,提高了实际减速度对目标减速度的跟踪效果;当列车在坡度为±30‰的坡道上运行时,减速度控制器能估计出坡度值,减速度控制误差由传统非减速度控制模式的±0.3m/s2减小到了±0.1m/s2;在不使用空簧压力信息计算车辆制动质量的情况下,减速度控制器能估计出列车的实际制动质量,获得了类似于传统非减速度控制模式的控制效果,为简化制动系统硬件的气路设计提供了可能。  相似文献   

2.
长期以来,列车制动系统在实验室内只能进行制动阀和制动系统静置试验,难以直接测试列车实际动态制动性能,因而对于长大货物列车制动性能及引起的纵向动力学效果难以判断。为此提出了基于滚动制动试验台进行车辆动态制动试验,即将虚拟列车制动系统模型与实际车辆制动系统组合,应用虚拟列车制动系统模型,通过计算机控制模拟不同编组列车的不同位置车辆的制动管路气压曲线,控制滚动制动试验台上单车做各种制动试验,以得出比较准确的列车各个车辆的实际动态制动效果。滚动制动试验台上车辆实际制动减速度和车辆前后拉杆承受的纵向力,为进一步评估各种编组列车制动纵向动力学性能提供了准确的依据,为长大货物列车运行安全提供了可靠的评估试验仿真装置。  相似文献   

3.
在长大坡道上运行的地铁客车制动系统方案制定与分析   总被引:2,自引:0,他引:2  
李毅  杨弘 《中国铁道科学》2002,23(2):95-101
通过对目前国内外地铁客车常用的几种制动方式,电空交叉混合制动形式及制动机的对比分析,根据地铁站距短,起制动频繁,制动减速度大的特点,阐述了在长大坡道上运行的地铁客车制动系统对踏面制动,盘形制动,电阻制动,再生制动,各车辆间的电空交叉混合制动及电控制动机的设计选型原则和方法,并以在连续近6km,5‰长大坡道上运行的德黑兰地铁客车恒速下坡,减速停车制动时所需的制动功率和车轮踏面温度模拟计算,试验的结果为例,说明在长大坡道上运行地铁列车必须设置足够功能的制动电阻来消散列车制动能量的必要性,提出了确定制动电阻发热等效电流(额定电流)及功率的基本原则和方法。  相似文献   

4.
日本铁道技术研究所为解决在窄轨铁路上列车提速后车辆制动性能存在的问题做了许多试验、研究工作、并提出了解决问题的新方法,包括制动减速度的确定,没行控制,再着,和吸附式轨道涡流制机等。  相似文献   

5.
无论是直通式还是间接式,世界各国高速列车制动系统多采用电空制动来实现。在分析研究国内外高速列车减速度设计的基础上,结合我国高速列车运营模式及电空复合的实际情况,以充分利用黏着、尽量减少制动距离为目标,设计了CRH380B高速列车制动系统紧急制动减速度曲线。根据该曲线,通过系统仿真的方法,确定了制动缸压力。  相似文献   

6.
浅谈地铁制动控制与列车冲动   总被引:1,自引:0,他引:1  
地铁的稳定性和舒适度正受到越来越多的重视.通过分析国内外关于列车冲击的相关标准,提出采用减速度和冲击率来评价列车冲动.研究地铁列车制动减速度与列车冲击率之间的关系,提出了针对地铁制动系统空气制动和复合制动的制动控制方法.  相似文献   

7.
CRH型电动车组制动距离计算与监控装置制动模式曲线设计   总被引:2,自引:0,他引:2  
通过对CRH型电动车组有关制动距离计算参数的分析研究,提出一套基于制动减速度的动车组制动距离计算方法和计算公式,同时对动车组LKJ列车监控装置制动模式曲线设计的有关问题作了论述。  相似文献   

8.
翼板制动气动性能数值分析   总被引:2,自引:0,他引:2  
在列车上布置若干翼板.采用K-ε湍流模型,通过求解三维黏性N-S方程,对不同行车速度下、翼板工作与否多种工况,进行流动结构分析和气动阻力计算.各翼板的阻力系数采用不同运行速度下阻力系数的平均值,对列车不同运行速度下翼板的制动减速度进行计算.随着列车运行速度的提高,翼板制动能力不断提高.列车运行速度为300、400 km/h时,翼板所提供的制动减速度分别为-0.139、-0.248 m/s2.翼板制动可以作为高速列车辅助制动的一种方式.  相似文献   

9.
大闭环控制方式的城市轨道交通列车制动控制系统,以既有的城市轨道交通列车制动系统为基础,加以适当改造,构建大闭环,通过对减速度的精确控制实现对城市轨道交通列车制动力的精确控制。介绍并比较分析了大闭环控制方式的列车制动控制系统与既有列车制动控制系统的构成、主要功能和作用原理,从理论上推断出大闭环控制方式的城市轨道交通列车制动控制系统能够显著改善列车的制动品质,实现列车精准定点停车。  相似文献   

10.
动车组制动系统减速度是依据运营线路情况(黏着)和车辆追踪间隔时间要求,确定的列车顶层技术指标。制动控制系统减速度曲线设计,必须满足减速度顶层指标确保制动距离安全,还需统筹考虑黏着利用降低滑行风险、最优化电制动利用;兼顾司机操作及乘客的舒适度、基础制动磨耗的经济性,使列车安全舒适,制动系统经济效益最大化。以速度250km/h中国标准动车组常用制动减速度曲线设计为例,介绍动车组制动系统常用制动减速度曲线设计方法及关键点。  相似文献   

11.
对比了国内外高速列车紧急制动减速度,探讨了增大列车紧急制动的可行性.提出了更大限度利用黏着,加用新型非黏着制动方式,并在兼顾车内旅客的舒适性和安全性的前提下,时速300 km及以上的高速动车组理想的紧急制动减速度应在1 m/s2左右.  相似文献   

12.
为了提高地铁列车旅行速度,国内外都要求地铁列车的加速度不低于1.0 m/s2,减速度不低于1.1~1.2 m/s2.目前,我国新建地铁线路大都选用加减速度较大的4M2T编组列车,其 目的也是为 了提高列车旅行速度.但GB 50157-2013《地铁设计规范》规定列车牵引计算的起动加速度和制动减速度分别不宜大于最大加速度...  相似文献   

13.
我国铁道列车紧急制动距离限值核定原则的探讨   总被引:6,自引:2,他引:4  
列车紧急制动距离限值涉及列车制动限速、信号机布置、速度监控模式等相关重大技术问题,并受粘着条件、非粘制动介入程度以及制动减速度等条件限制。基于列车动能与列车制动力功(含阻力功)相等的条件,建立了普遍的铁道列车紧急制动距离限值的核定原则及计算模式,分析与选择了回转质量系数、制动粘着系数、粘着系数利用程度、列车单位基本阻力、非粘制动比例系数、安全距离、制动空走时间以及制动减速度等相关参数。描述并阐明:我国制动粘着系数公式(湿轨)可扩展应用于更高速度范围;粘着系数利用程度因制动装备技术水平而异;非粘制动比例系数可达20%~40%;旅客列车的紧急制动平均减速度宜控制在0 08g~0 1g以内,最大不宜超过0 12g,货物列车的紧急制动平均减速度可按旅客列车的60%~70%考虑。推荐的核定原则与计算模式适用于所有轮轨系列车。  相似文献   

14.
高速动车组电空制动系统是由气动元件、电子元件和基础制动装置组成的复杂系统。基于现代流体力学的仿真分析软件AMESim建立制动系统中关键气动元件的仿真模型,通过试验数据对仿真模型进行验证和参数修正;将封装的气动元件模型与电子元件模型和基础制动装置进行系统集成,建立单车以及列车级电空制动系统仿真模型。基于列车级电空制动系统仿真模型,对高速动车组电空制动系统参数进行配置和分析,设计高速动车组电空制动系统。在最大常用制动和紧急制动2种工况下对基于仿真模型设计的高速动车组电空制动系统进行验证。结果表明:最大常用制动时减速度仿真值与减速度设计值相符;紧急制动时制动距离试验值为5 670m,仿真计算值为5 795m,相对误差为2.2%,仿真计算值与试验值吻合程度高。  相似文献   

15.
为制定在特殊天气情况下(雾、雾霾)列车出库时的应急预案,以及准确掌握列车在不同初速度下的紧急制动距离,在试车线对西安地铁1、2号线车辆在不同初速度下的紧急制动距离进行测试。对测试结果进行理论分析与现场验证,得出:在制动系统相同的情况下,制动初速度越大,空走时间对制动减速度的影响就越小,平均减速度越接近瞬时减速度,在同等制动级位下,纯空气制动和电控混合制动虽然均满足减速度要求,但减速度值大小不尽相同;在制动系统不同的情况下,制动供货商设计和确定的系统减速度下限值、闸瓦材质、空走时间、所选的理论计算模型,以及外界测试工况对制动减速度和制动距离均有影响。  相似文献   

16.
制动减速度和制动冲动是影响动车组乘客舒适度的重要指标。我国和谐号动车组规定了制动冲动限制的极限值为0.75m/s3、常用制动减速度≤1.0m/s2的参考舒适度要求。本文论述制动控制与参考舒适度的关系,介绍了动车组制动系统减速度及制动冲动控制原理,从而保证了制动时的乘坐舒适度要求。  相似文献   

17.
针对高速列车或城市轨道交通列车高精度停车距离的要求,依靠ATP或司机根据前方停车距离不断修正制动指令来实施停车制动这一方法大多情况下是有效的,但是对于弯道和坡道等特殊情况下的制动,这一方法难以满足要求.为了更好地在各种路况下精确停车,本文首先对目前各列车制动控制模式进行比较,并分析各自不足,提出减速度控制方法;分析减速度控制采用车体减速度的必要性,并分析建立了直线下坡道以及下坡道和弯道同时存在情况下减速度计算模型,运用Matlab软件对模型进行了计算.计算结果表明:制动减速度可以用列车绝对纵向减速度近似代替.这一结果为减速度控制中减速度的获取提供了理论依据.最后对减速度控制作了展望.  相似文献   

18.
针对动车组列车制动系统的非线性及其在ATO中的重要性,从控制和动力学角度提出动车组列车制动系统的Hammerstein模型。根据制动指令信号的流向介绍动车组列车制动系统的工作过程;分别考虑系统各环节,用经过曲线拟合得到的静态非线性函数描述动车组列车制动特性表,用延时环节描述制动指令信号传输和制动控制器动作的延时,用两个一阶线性环节分别描述制动力反馈调节过程和动车组列车减速度冲动缓解过程,提出动车组列车制动系统的Hammerstein模型;并介绍了思维进化算法辨识模型参数的方法。最后以CRH2型动车组为仿真对象验证模型和参数辨识方法的有效性。  相似文献   

19.
列车运行监控装置( LKJ)是我国自主研制用于防止列车冒进信号、运行超速事故的重要行车安全装备.LKJ对列车的控制主要通过"报警"和输出"卸载"、 "常用制动"、 "紧急制动"3种不同控制指令来实现,即当列车速度超过LKJ设置的报警速度时,装置发出声光报警,提示司机采取减速措施.若司机仍未采取措施,且列车速度达到装置设定的卸载、常用制动、紧急制动的动作值时,即发出切除牵引动力(卸载),实施常用制动和紧急制动,迫使列车减速或停车,确保列车安全运行.  相似文献   

20.
李力 《铁道知识》2006,(5):39-40
列车制动时,闸瓦或者制动盘产生的制动力,是使通过轮轨问作用力使列车减速的。然而,如果制动力过大或轮轨粘着系数降低,车轮就会抱死滑行。滑行不仅会造成列车制动阻力减少,制动距离增加,还会擦伤车轮,影响列车安全平稳运行。列车提速后,特别是旅客列车速度提高后,为了尽量缩短制动距离,必须要充分地利用粘着力,车轮纵向滑行的几率也相应增加。为了防止车轮滑行,需要在提速客车上安装防滑器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号