首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为开展单箱双室箱梁剪力滞效应的试验研究,制作了有机玻璃简支箱梁模型。在容许开裂范围内,对该试验箱梁进行集中力作用于跨中截面三腹板上方、两对称边腹板上方和中腹板上方的加载。采用DH3816应变采集仪测得跨中及1/4跨截面各关键点应变值,并用百分表测得箱梁各关键截面挠度值。测量得到的截面应力分布规律验证了箱梁截面剪力滞效应的存在。同时对该有机玻璃简支箱梁,采用空间板壳数值方法计算了3种集中力工况下截面的剪力滞分布规律。结果表明,集中力作用下双室箱梁各翼板间存在明显的剪力滞效应,且荷载的横向作用位置对箱梁截面剪力滞效应影响较大。  相似文献   

2.
基于比拟杆法,推导单箱三室箱梁的比拟杆面积计算公式和剪力滞效应计算的控制微分方程。针对算例,分别采用本文理论、有机玻璃模型试验和有限元法分析简支箱梁和连续箱梁在集中力和均布荷载作用下的剪力滞效应。研究结果表明:本文理论解与有机玻璃模型试验解和板壳有限元解吻合良好。对简支箱梁,中腹板部位的顶和底板正应力均大于边腹板处顶和底板正应力。对连续箱梁,跨中截面中腹板处的顶和底板正应力均大于边腹板处和底顶板正应力。但对满跨均布荷载下的支座截面,底板正应力在边腹板部位大于中腹板部位,应力相差最大约12.91%。在单箱三室箱梁设计中考虑各腹板部位顶和底板正应力的差异,并以此确定有效翼缘分析宽度是非常必要的。  相似文献   

3.
研究目的:由于不同的刚度分布,波形钢腹板预应力混凝土箱梁截面剪力滞效应与普通预应力混凝土箱梁截面存在较大差异,为研究单箱双室波形钢腹板预应力混凝土箱梁的剪力滞效应,借助有限元分析软件ANSYS建立单箱双室波形钢腹板预应力混凝土箱梁空间模型,分析两种典型荷载工况下典型截面的应力分布,得到典型截面的剪力滞系数,并与普通预应力混凝土箱形梁作比较,分析讨论7种几何参数变化条件下箱梁剪力滞系数的变化情况。研究结论:(1)采用波形钢腹板略增大了各断面的最大剪力滞系数;(2)对于顶板而言,中腹板的剪力滞系数大于边腹板,底板反之;(3)剪力滞系数的主要影响参数是宽跨比、承托长度、顶板厚度,横隔板数量对剪力滞系数的影响甚小;(4)该研究成果对波形钢腹板预应力混凝土箱梁设计及计算分析具有参考借鉴价值。  相似文献   

4.
研究目的:多室箱梁在竖向弯曲变形时,对应于初等梁理论纵向应力计算模式,存在多种横向剪力滞效应模式。本文在分析单箱双室箱梁剪力滞效应的基本模式和力学机理的基础上,结合铁路单箱双室简支箱梁算例,研究在跨中集中力和满跨均布荷载下,不同剪力滞效应模式的分布规律。以对剪力滞效应影响较为突出的高跨比为变量,研究高跨比变化对各剪力滞模式的影响规律。研究结论:通过对双室箱梁的剪力滞效应分析,得出:(1)以双室箱梁为代表的多室箱梁,对应于同一纵向对称荷载,存在着多种剪力滞效应模式,且不同模式的剪力滞效应差异较大;(2)在单箱双室箱梁的多种剪力滞效应模式中,集中力仅作用于中腹板时,截面的剪力滞效应最为突出,同时剪力滞效应对高跨比的改变最为敏感;(3)考虑到多室箱梁剪力滞效应的多模式性,在进行多室箱梁设计时,应充分考虑不同荷载作用模式对剪力滞效应的影响;(4)本文研究方法和结论可为多室箱梁桥的设计和力学分析提供理论借鉴。  相似文献   

5.
变分原理分析混凝土箱梁的剪力滞效应   总被引:1,自引:0,他引:1  
本文针对翼板沿截面宽度方向变厚度的混凝土箱梁,利用势能变分原理,建立单室混凝土箱梁的剪滞效应分析方法。基于选定的剪力滞翘曲位移函数,提出变厚度翼板的广义截面常数计算公式。针对常见的简支梁和悬臂梁,导出集中力和均布荷载作用下的考虑剪滞效应的纵向应力和竖向挠度计算公式。通过对算例混凝土简支箱梁的剪力滞效应采用板壳数值解和本文理论解的对比分析,验证本文分析方法的精度。通过改变翼板厚度,研究混凝土箱梁翼板厚度变化对剪力滞效应的影响规律。  相似文献   

6.
为研究不同支承形式对波形钢腹板预应力混凝土曲线箱梁剪力滞效应的影响,采用ANSYS软件建立单跨波形钢腹板曲线箱梁的有限元模型,在跨中集中荷载和全桥分布荷载作用下,分析不同支座布置形式下的剪力滞效应。研究结果表明:单跨波形钢腹板曲线箱梁在集中荷载下,4种支承的最大剪力滞系数均出现在跨中截面,从大到小依次为静定中心支承、静定偏心支承、超静定中心支承、超静定偏心支承。在分布荷载下,4种支承对应的跨中控制截面的剪力滞系数均在1.161左右,差异较小。  相似文献   

7.
考虑混凝土顶板和钢底板不同的模量,结合变分法推导波形钢腹板-钢底板-混凝土顶板(简称CSWSB)组合箱梁剪力滞效应的控制微分方程组和边界条件,建立CSWSB简支组合箱梁跨中集中荷载、均布荷载作用下剪力滞系数和有效分布宽度的计算公式,采用模型试验梁对2种荷载工况下单箱单室组合箱梁的剪力滞效应和有效分布宽度进行分析。研究结果表明:简支组合箱梁在集中荷载和均布荷载作用下剪力滞系数表达式正确,集中荷载作用下的剪力滞效应比均布荷载作用下的剪力滞效应明显,上翼缘板的剪力滞效应比下翼缘板的剪力滞效应明显;根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》计算CSWSB组合箱梁翼板有效分布宽度时,与理论计算局部差值达到了10%,富余量较小;与《钢-混凝土组合桥梁设计规范》计算CSWSB组合箱梁翼板有效分布宽度对比,整体差值率偏大,设计中应给予重视。  相似文献   

8.
为分析变截面连续梁的剪力滞效应,推导了变截面连续梁剪力滞效应的比拟杆控制方程,以某三跨连续梁为例检验了本文算法的正确性,讨论了箱梁梁高变化对连续箱梁剪力滞系数的影响,通过分析箱梁顶板和腹板内剪力流沿跨长的分布规律,探讨了梁高变化对连续箱梁正负剪力滞的影响规律。研究发现:连续梁正弯矩区呈现正剪力滞现象,负弯矩区的剪力滞现象与悬臂梁类似;梁高沿跨径方向的变化减弱了连续箱梁负弯矩区内剪力滞效应,但增大了正弯矩区的正剪力滞效应;工程设计时可以增大连续梁在负弯矩区内梁高的变化梯度,并减小正弯矩区内梁高的变化梯度,以最大程度地减小箱梁剪力滞效应。  相似文献   

9.
在位移场中引入挠度1阶导数考虑翼板局部弯曲,添加剪力滞强度函数和截面转角计入翼板剪力滞效应和波形钢腹板剪切变形,基于能量变分原理获得波形钢腹板组合箱梁的控制微分方程,进而推导包括挠度在内的综合考虑翼板局部弯曲、剪力滞效应和波形钢腹板剪切变形的位移变量解析解,并分析翼板局部弯曲和剪力滞效应对不同高跨比、腹板高度占比、宽跨比、板宽比组合箱梁挠度的影响。结果表明:该解析解能较精确地计算组合箱梁的挠度;忽略翼板局部弯曲和剪力滞效应将导致组合箱梁的挠度计算结果误差过大;对于波形钢腹板组合箱形连续梁,不考虑翼板局部弯曲和剪力滞效应,跨中挠度将分别被高估13.0%和低估7.0%;剪力滞效应对翼板与波形钢腹板间的剪力分配几乎无影响,翼板局部弯曲会显著降低波形钢腹板剪力承担比,大大减小梁体挠度;剪力滞对挠度的放大效应随宽跨比的增大而增大,而翼板局部弯曲对挠度的减小作用随着高跨比和宽跨比的增大及波形钢腹板高度占比的减小而显著提高;翼板局部弯曲和剪力滞效应对连续梁挠度的影响比简支梁更大。  相似文献   

10.
为了研究考虑剪力滞效应的混凝土薄壁箱梁肋板厚度对箱梁截面正应力分布的影响,利用有限元软件建立不同肋板厚度的数值模型得到跨中上翼缘板沿横截面的剪力滞系数,对比分析薄壁箱梁不同肋板厚度下的剪力滞系数分布情况。结果表明:相同条件下考虑剪力滞效应情况的薄壁箱梁肋板越薄,横截面剪力滞系数越大,横截面应力越大;为了保证安全的前提下,薄壁箱梁肋板厚度取值应满足规范的最小值要求。  相似文献   

11.
三跨连续变高度薄壁箱梁桥剪力滞效应试验研究   总被引:1,自引:0,他引:1  
介绍采用电阻应变法测定三跨连续变高度薄壁箱梁有机玻璃电测模型桥在集中荷载与均布荷载作用下应力分布的剪力滞效应 ,试验测定结果验证了用能量变分原理导出的箱梁受横向荷载作用下剪力滞效应的有限段数值解的准确性。  相似文献   

12.
多国规范中均给出了在没有精确算法时建议的剪力滞系数。为精确分析杨梅州大桥80m简支钢箱梁跨中截面的剪力滞效应,分别按平面梁单元与空间壳单元进行建模分析,对其在自重、二期恒载、均布线荷载、跨中集中力作用下的应力结果进行了比较,准确得到了该简支钢箱梁的剪力滞系数。  相似文献   

13.
采用有限元方法对混凝土连续箱梁桥的剪力滞效应进行分析,重点研究了车辆荷载类型及作用位置对箱梁剪力滞效应的影响.结果表明:不同车辆荷载作用下,箱梁剪力滞系数横向分布规律不同,荷载等级对箱梁剪力滞效应的影响较为明显;车辆荷载纵向变位对梁端截面剪力滞效应影响较大,对跨中截面影响较小,距离支座越近剪力滞效应越明显;箱梁顶板中心剪力滞系数随着车辆荷载从翼板向箱梁中心移动,将经历一个负剪力滞效应到无剪力滞效应,再到正剪力滞效应的过程,而底板剪力滞效应受荷载横向移动的影响较小;车辆荷载对其作用点附近的局部区域剪力滞效应影响较大.  相似文献   

14.
选取基于剪切变形规律的翘曲位移函数的有限梁段法分析箱梁的剪力滞效应。该翘曲位移函数的定义是从剪力滞效应是由于翼板剪切变形引起的这一基本机理出发的,原理更加明确并且分析精度高。建立基于最小势能原理的变分法的箱梁剪力滞控制微分方程及边界条件,在此变分法微分方程的基础上,导出相应梁段单元剪力滞系数矩阵和广义荷载列阵,运用有限梁段法来分析剪力滞效应,分析试验模型及铁路简支箱梁分别在均布荷载和跨中集中荷载作用下以及悬臂箱梁箱在均布荷载作用下的剪力滞效应。分析简支梁和悬臂梁分别在均布荷载和跨中集中荷载作用下的剪力滞效应。并与相应的变分法解析结果进行比较,结果吻合良好,从而验证本文方法的正确性。  相似文献   

15.
研究目的:为了研究箱梁桥在预应力作用下的剪力滞效应,以承受预应力作用的简支箱梁为对象,基于能量变分法,结合预应力等效荷载法,建立了直线、折线和曲线布束方式的简支梁在预应力作用下的剪力滞效应解析解。针对算例简支箱梁,研究3种布束方式综合作用下箱梁的剪力滞效应,并和有限元板壳数值解进行对比分析。以高速铁路10种典型标准设计整孔简支箱梁为例,研究直线、折线和曲线布束下跨中部位应力最大点处的剪力滞系数。研究结论:通过研究得出:(1)通过本文解析方法与板壳有限元数值解的对比表明,本文解析方法可以有效计算简支梁在预应力作用下的剪力滞效应;(2)对既有高速铁路简支梁桥,直线布束在跨中引起的剪力滞效应最小、其次为曲线布束、折线布束最大;(3)本研究成果对预应力混凝土箱梁的预应力设计具有理论借鉴意义。  相似文献   

16.
综合考虑剪力滞效应、褶皱效应、剪切变形和转动惯量的影响,对组合箱梁上下翼板和悬臂板设立2个不同的剪滞纵向动位移差函数,采用Hamilton原理和能量变分法,建立组合箱梁的弹性控制微分方程和自然边界条件,得到相应广义位移的闭合解,进行等截面波纹腹板钢箱组合连续梁的自振特性研究。结果表明:该闭合解计算结果与有限元计算结果及模型试验值吻合良好,剪力滞效应降低了波纹腹板钢箱组合连续梁的竖向刚度,其影响随宽跨比的增大而趋强;受褶皱效应的影响,组合梁的自振频率降低,随着频率阶数升高,剪力滞和褶皱效应的影响增大;底板厚度的增加对连续组合箱梁1阶频率的影响较大,对其高阶频率的影响趋势减弱;采用换算截面法计算波纹腹板钢箱组合连续梁的自振特性具有可靠性。  相似文献   

17.
为了计算分析变截面薄壁箱梁剪力滞效应及其参数的敏感性,提出一种考虑剪力滞效应的三节点板元梁段法。基于箱梁截面内应变-位移-基本变形之间的关系,以形函数作为单元内高度变化的插值函数,利用最小势能原理推导出梁段法对应的等参有限元行列式。使用编写的有限元程序对算例进行计算,梁段单元法计算结果与模型的实测值及有限元数值结果均吻合良好,验证了理论方法与公式推导的正确性和可靠性;在集中和均布荷载2种工况下,分别考察变截面薄壁箱梁剪力滞效应分析中常见影响参数的敏感性,研究结果表明:翼宽比、宽跨比和腹板倾角是影响变截面箱梁剪力滞效应的主要因素。文中方法计算精度好、效率高,对分析变截面箱梁的剪力滞效应具有一定的参考价值。  相似文献   

18.
预应力RPC箱梁剪力滞效应分析   总被引:5,自引:4,他引:1  
活性粉末混凝土(RPC)是一种具有超高强、高耐久性的新型高性能混凝土材料。用有限元法和能量变分法对预应力活性粉末混凝土简支箱梁的剪力滞效应进行研究。研究结果表明:RPC箱梁由于材料特性的改变使得剪力滞效应比同等条件下普通混凝土箱梁的大,在设计中应特别注意。各工况条件下的剪力滞效应从跨中到梁端部均逐渐增大,正应力在跨中附近比较接近梁理论计算结果,但在八分之一截面处相差较大,甚至超出初等梁理论计算值约20%;箱梁同一位置的剪力滞效应随荷载形式变化有不同的规律;预应力对剪力滞效应的影响不大,仅在梁端部区段略有增大,这是受梁端部预应力的影响。建议在设计时,满足梁端部抗裂设计的同时,抗弯也要留有一定的富余。  相似文献   

19.
为研究变截面波形钢腹板组合箱梁的剪力滞效应,充分考虑该组合箱梁的结构和受力特点,推导加劲杆等效面积和波形钢腹板剪力流的计算公式,建立剪力滞控制微分方程,并基于给定的边界条件对微分方程进行求解,由此建立用于分析变截面波形钢腹板组合箱梁剪力滞效应的修正比拟杆法.选取两根变截面梁作为数值算例,包括单箱单室悬臂梁和单箱三室悬臂...  相似文献   

20.
为精确计算曲线波形钢腹板简支箱梁的竖向弯曲自振特性,考虑箱梁剪力滞和剪切变形双重效应,在假设箱梁翼板纵向位移函数的基础上,运用能量变分法和哈密顿原理推导了曲线波形钢腹板简支箱梁的弯曲自由振动微分方程,得到其竖向弯曲自振频率的解析解;建立有限元模型,将分析结果与推导的理论公式计算结果加以对比,并分析了跨径比、宽跨比和高跨比对竖向弯曲基频的影响。研究结果表明:本文竖向弯曲自振频率公式的计算结果与有限元分析结果差值在9%以内,且比初等梁理论计算精度高;剪力滞效应和剪切变形均削减了曲线波形钢腹板简支箱梁的刚度,使其竖向弯曲自振频率与初等梁理论的计算结果相比有所降低,同时考虑2种效应可能使竖向弯曲基频降低25%以上。剪力滞效应对竖向弯曲基频的影响随着跨径比和宽跨比的增大而增大,而高跨比变化时影响略有减小;剪切变形对竖向弯曲基频的影响随着宽跨比和高跨比的增大而增大,而跨径比变化时影响保持不变。对于不同参数取值的曲线波形钢腹板简支箱梁,竖向弯曲基频的剪切变形影响系数变化范围为5%~25%,而剪力滞效应的影响系数一般小于10%。在分析曲线波形钢腹板箱梁动力性能时应考虑剪切变形;当跨径比小于0.4,宽跨比小于0.1时,可忽略剪力滞效应的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号