首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
高速列车整车气动噪声及分布规律研究   总被引:1,自引:0,他引:1  
本文建立包括头车、尾车、中间车、受电弓、转向架在内的CRH3型高速列车整车三维绕流流动的数值计算模型,用Fluent软件计算不同速度的外部稳态流场,基于稳态流场结果,使用宽频带噪声源模型计算车身表面气动噪声源,得到车体表面声功率级分布;以稳态流场为初始值,用大涡模拟计算车外部瞬态流场,基于瞬态流场用FW-H噪声模型预测高速列车辐射的远场噪声;分析车体表面声功率级和远场总声压级的分布规律,并将车体侧面远场噪声计算结果与试验结果进行比较分析。结果表明:列车高速运行时的气动噪声源主要是迎风侧车头及受电弓等曲率变化较大的曲面,受电弓滑板表面声功率级最大,高于头车头部15dB;从总声压级来看,受电弓滑板、头车第一个转向架和头车鼻尖处总声压级分别为160dB、135dB、130dB,受电弓滑板处具有最大的总声压级;从车体侧面噪声来看,离地面越近噪声越大。通过将远场噪声计算结果与噪声测试结果的对比证明了本文计算结果的准确性。  相似文献   

2.
建立3辆车编组高速列车气动噪声计算模型,包括1辆头车、1辆中间车、1辆尾车、6个转向架和1个受电弓,利用标准k-ε湍流模型和大涡模拟分别计算列车的外部稳态和瞬态流场,并基于瞬态流场用FWH方法计算高速列车远场气动噪声。计算单个转向架、全部6个转向架、车体头部、车体尾部、车体中间部、全部车体、受电弓、列车整体分别为噪声源时的远场辐射噪声,分析这些噪声源对远场噪声评估点的总声压级,以及不同噪声源对远场噪声的贡献,以验证局部气动噪声源对远场辐射噪声与整体噪声源之间的叠加关系。计算结果表明:车体是高速列车远场辐射噪声的主要噪声源,其次是受电弓,转向架对远场辐射噪声影响相对较小;从局部噪声源来看,车体头部、受电弓、头部第1个转向架是高速列车远场辐射噪声的主要噪声源;各局部气动噪声源远场噪声的叠加值与整体气动噪声源远场噪声一致,验证了高速列车整体噪声源与其包括的各局部噪声源符合声源叠加原理。  相似文献   

3.
高速列车气动噪声及减噪措施介绍   总被引:1,自引:0,他引:1  
随着高速列车速度的不断增加,高速列车的气动噪声问题愈发突出.高速列车气动噪声已成为目前世界必须研究和解决的问题之一.针对高速列车气动噪声的性质介绍了高速列车的气动噪声源,分析了受电弓装置、车厢间的连接部位、百叶窗、转向架、车头和车尾各部位气动噪声的产生机理,在此基础上综述了以上各部位降低其产生气动噪声而采取的相应措施.  相似文献   

4.
为研究高速列车受电弓安放位置和受电弓导流罩嵌入车体高低对气动噪声的影响,基于计算声学理论,建立高速列车气动噪声模型。高速列车模型采用四节编组,包括头车、两节中间车和尾车。受电弓分别安放于02车一位端、02车二位端和03车一位端,并考虑受电弓的开/闭口方式。研究结果表明:沿列车长度方向,受电弓分别安放在02车一位端、02车二位端、03车一位端的受电弓导流罩区域的气动噪声最大声压级呈减少趋势,且这种减小趋势与受电弓开闭口方式无关;受电弓导流罩安放在同一位置时,受电弓以闭口方式运行的受电弓导流罩区域声压级均小于开口方式,最大声压级相差1.1 dBA;采用dlz3模型(受电弓导流罩与车顶表面平齐)的气动噪声性能最优,最大声压级减小2.3 dBA。  相似文献   

5.
350 km·h-1高速列车噪声机理、声源识别及控制   总被引:5,自引:0,他引:5  
为了考察350 km·h-1高速列车在运行状态下的车外噪声水平、主要声源及其源强分布特性,根据国内外高速列车噪声理论和试验研究经验,在列车和线路状况满足ISO3095-2005标准相关要求的前提下,在京津城际铁路选取现场测试工点,采用多通道阵列式噪声数据采集分析系统,对京津城际铁路高速列车噪声进行现场测试.测试数据分析结果表明:350 km·h-1高速列车车外辐射噪声的主要声源为轮轨接触部位、转向架、受电弓及其底座以及车辆连接处的气动噪声;对车辆上不同位置测得的声暴露级按大小排序,前4名的依次为头车轮轨接触位置、第2节车辆受电弓位置、第2节车辆的轮轨接触位置、头车和第2节车辆上部的气动噪声.由此提出350 km·h-1高速列车噪声的控制策略及措施.  相似文献   

6.
基于Realizable k-ε方程的DES数值模拟方法,研究某高速列车头、中和尾车不同区域对整车气动阻力系数的贡献值,并结合风洞试验结果,验证本文所采用的计算方法,计算与风洞试验结果两者偏差在2%以内;各车辆的瞬态气动阻力系数时程曲线在均方根值上下波动,其中头车的脉动幅度最小,尾车最大;头车、尾车的头部曲面区域及各个车辆转向架区域的气动阻力占整车气动阻力的77.8%;前端转向架区域气动阻力系数从头车、到中间车、到尾车大幅度减少,后端转向架区域气动阻力系数逐渐增加;从流场结构来看,列车的头部、风挡、车底结构以及车尾处产生了大量的漩涡;沿车长方向,头车车体附近的漩涡情况好于中车和尾车。  相似文献   

7.
采用大涡模拟和FW-H方法,对1:8缩比8车编组北京轨道交通新机场线列车气动声学特征进行模拟研究。列车模型按照实际列车缩比而成,包含转向架、风挡和受电弓等复杂结构。列车运行速度分别为140,160,220和250km/h。研究分析速度场、涡量场、压力脉动场和辐射声场等。研究结果表明:偶极子声源强度主要分布在尾车、头车流线型车底、第1个转向架、空调机组和受电弓区域;不同测点声压级随着频率的增加,总体呈现为先上升后下降的趋势,在400~700Hz频率左右时测点声压级达到峰值;监测点的总声压级在头车流线型附近较大,在尾车及其下游,总声压级逐渐减小。  相似文献   

8.
为了考察350km·h^-1高速列车在运行状态下的车外噪声水平、主要声源及其源强分布特性,根据国内外高速列车噪声理论和试验研究经验,在列车和线路状况满足ISO3095--2005标准相关要求的前提下,在京津城际铁路选取现场测试工点,采用多通道阵列式噪声数据采集分析系统,对京津城际铁路高速列车噪声进行现场测试。测试数据分析结果表明:350km·h^-1高速列车车外辐射噪声的主要声源为轮轨接触部位、转向架、受电弓及其底座以及车辆连接处的气动噪声;对车辆上不同位置测得的声暴露级按大小排序,前4名的依次为头车轮轨接触位置、第2节车辆受电弓位置、第2节车辆的轮轨接触位置、头车和第2节车辆上部的气动噪声。由此提出350km·h^-1高速列车噪声的控制策略及措施。  相似文献   

9.
随着列车速度的提升,气动噪声问题愈发突出,而受电弓引发的气动噪声占有较高比例,因此提出一种射流主动降噪方法。通过建立3节车编组的整车模型,采取定常SSTk-w湍流模型和宽频带噪声模型进行仿真,分析高速列车受电弓气动噪声声源及流场特性;基于LES和FW-H声学比拟理论分析研究气动噪声特性。数值计算结果表明,顺向射流降噪效果显著,逆向射流降噪效果不明显。在列车速度350km/h下,施加顺向射流的标准监测点平均总声压级降幅达6.04d B,数值算例结果验证了本文提出的射流主动降噪的有效性。  相似文献   

10.
采用三维、不可压缩和Lilly LES+FW-H方法,对1:8缩比3车编组EMU6动车组以200,250,300和350 km/h的车速运行时进行气动噪声特性数值模拟,得到列车不同速度级运行时的压力、速度与涡量分布,表面脉动压力、辐射声场等气动与声学性能。研究结果表明:偶极子声源强度主要分布在转向架及其周围的车体表面位置;A计权声压频谱在略小于1 000 Hz频率处测点声压级达到峰值;气动噪声分布频带很宽,噪声能量在1 000 Hz左右较为集中,往高频和低频部分则逐渐衰减;头车流线型附近声压级较大,在尾车以后越远离车体,声压级越小。其研究结果可为高速动车组的气动声学特性优化研究提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号