首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对海南环岛高速铁路东段CRH1型动车组晃车的情况,分析了晃车严重区段的轨道几何尺寸、焊接接头平直度、钢轨光带及轨头廓形。研究结果表明:钢轨轨头廓形异常(内侧工作边R80和R13圆弧处明显凹陷)和等效锥度过小(仅为0. 075)将造成轮轨匹配关系不良,表现为钢轨光带不居中,偏向轨距角侧,直线地段出现左右股钢轨光带周期性交替侧磨;车轮与钢轨非正常接触是导致CRH1型动车组晃车的主要原因。据此提出了钢轨打磨整治措施,并制定了详细的钢轨打磨方案以修正轨头廓形,使等效锥度由0. 075提高到0. 115,达到轮轨匹配等效锥度的合理范围0. 08~0. 35,改善了轮轨接触关系,解决了动车组晃车的问题。  相似文献   

2.
对我国高速铁路因轮轨匹配问题而导致轮轨接触位置不良、动车组构架横向加速度超限报警、动车组异常抖动、钢轨波磨、道岔直尖轨非工作边疲劳裂纹等的具体成因进行研究,并主要从轮轨接触关系、等效锥度、轮轨匹配、钢轨打磨、道岔直尖轨处理等方面提出对应的解决方案。结果表明:车轮型面与60钢轨廓形不匹配导致了轮轨接触位置不良,采用60N钢轨可使轮轨的接触位置居中;按设计的钢轨廓形或60N钢轨廓形进行钢轨打磨,可以有效降低轮轨的等效锥度,从而抑制动车组异常抖动和构架横向加速度超限;采用GMC96—B型和GMC96—X型钢轨打磨车打磨产生的钢轨周期性磨痕波深较大时,容易发展成钢轨波磨,而采用大机打磨可有效治理钢轨波磨;道岔直尖轨非工作边因未倒棱且长期承受应力集中作用是造成其产生疲劳裂纹的根本原因,可采用倒圆和组合断面轨面修型处理,有效控制直尖轨非工作边的疲劳伤损。  相似文献   

3.
高速铁路轮轨形面匹配研究   总被引:1,自引:0,他引:1  
介绍国内外高速铁路轮轨形面和硬度匹配情况和存在问题。分析总结轮轨接触光带不良带来的危害。通过对钢轨预打磨优化轮轨接触、轮轨硬度合理匹配和新轨头廓形钢轨进行研究,提出预打磨轨头廓形设计、钢轨预打磨的技术要求和需要注意的其他问题,并对钢轨预打磨进行实践和使用评价;提出我国高速铁路新轮与新轨的几何形面不匹配,表现为轮轨接触光带不在设计的轨头踏面中心等结论;建议统一动车车轮形面并开展新轨头廓形钢轨的研发和应用,以改善轮轨接触关系。  相似文献   

4.
针对我国高速铁路早期由于轮轨匹配不良出现的高铁动车组构架横向加速度报警、抖车、晃车和波磨等现象,提出用钢轨打磨方法解决轮轨匹配不良问题,进行廓形打磨技术研究与实践,改善和优化我国高速铁路轮轨型面匹配关系,从工务方面解决了高铁动车组构架横向加速度报警等问题。通过大量现场调研及实践,提出钢轨和道岔打磨工艺规范及标准,形成了我国高速铁路钢轨和道岔打磨成套技术。  相似文献   

5.
为解决国内部分服役动车组在运营过程中产生车体低频横向晃动问题(以下简称“晃车”),提高车体平稳性和旅客乘坐的舒适性,基于对部分晃车区段(打磨目标为60N钢轨的高速铁路干线)开展跟踪调研与测试的基础上,对比工务系统打磨后左右轨对称情况下,不同偏差值的钢轨廓形对应车体低频横向晃动的差异;并结合动力学仿真软件研究不同偏差值的钢轨廓形对于晃车现象的影响,找出打磨目标为60N钢轨的合理打磨限值并提出相应的打磨措施与建议。结果表明:晃车区段左右股钢轨工作边相较于打磨目标廓形60N钢轨存在过打磨导致等效锥度过小,是造成动车组晃车的重要原因;以车体横向振动加速度、车体横向晃动主频和轮轨匹配等效锥度等值为主要依据,提出60N钢轨在横坐标15 mm处的负偏差为0.1 mm时,会出现晃车现象,建议工务系统以60N钢轨为目标廓形时,按照正偏差打磨,打磨值宜按+0.1 mm控制。  相似文献   

6.
针对成贵客专某型动车组出现的异常抖动问题,现场对动车组异常抖动区段的轨面状态、钢轨廓形进行调查,结合轨面状态、实测车轮踏面及实测发生抖车工况的动车组车体加速度测试结果,从轮轨关系角度分析动车组发生异常抖动的原因。成贵客专动车组出现异常抖动主要发生在车站道岔区段,原始廓形为60轨,长期未进行廓形修整导致钢轨廓形不良、轨头扁平,与实测磨耗车轮匹配时锥度过大,引起轮轨关系恶化,蛇行运动能量急剧增大。通过廓形打磨,钢轨廓形得到有效修复,钢轨光带分布合理,轮轨关系得到有效改善,动车组异常抖动问题得到有效解决。  相似文献   

7.
在对京沪高铁开展轮轨型面跟踪测试的基础上,分析LM_A和LM_B车轮型面分别与60D钢轨型面匹配时的轮轨磨耗特征;利用数值仿真手段,研究磨耗后不同轮轨型面匹配组合下的轮轨接触范围与钢轨光带宽度和等效锥度的关联性;通过分析钢轨光带宽度与等效锥度的关联性,结合名义等效锥度限值,研究避免高速动车组运行过程中出现典型异常振动问题的钢轨接触光带合理范围。结果表明:高速铁路的钢轨磨耗远小于车轮磨耗;直线区段钢轨磨耗主要分布于钢轨顶弧中心附近,轮轨接触宽度与钢轨光带宽度相对应;钢轨光带宽度与轮轨匹配名义等效锥度正相关,钢轨光带宽度小于20 mm时易出现动车组车体晃车、大于45 mm时易出现动车组转向架横向振动加速度报警。  相似文献   

8.
针对某高速铁路动车组车体抖动问题,采集不同线路工况下车体振动加速度及平稳性数据、不同磨耗车轮踏面及打磨前后钢轨廓形,研究不同线路工况、车轮踏面和钢轨廓形对动车组车体振动特征影响,研究镟轮后不同时期车轮踏面和打磨前后钢轨廓形匹配下轮轨几何接触关系。同时,采用实际线路及动车组车辆参数,基于多体动力学软件Simpack建立包含实测车轮踏面和钢轨廓形的车辆-轨道耦合系统动力学模型,计算车轮镟修和钢轨打磨对车辆关键动力学指标的影响。研究结果表明:该高速铁路动车组车体抖动主要发生在隧道工况内,体现为垂向和横向的综合异常振动;随车轮踏面磨耗增加,实测车体振动加速度逐渐增大,轮轨接触关系逐渐恶化,与未廓形打磨钢轨匹配时尤为明显;钢轨打磨可以有效抑制等效锥度随车轮踏面磨耗增加的不断增大,有效改善轮轨接触关系。车轮镟修和钢轨廓形打磨均可降低等效锥度,有效整治高速铁路动车组车体抖动。  相似文献   

9.
研究目的:针对大秦重车线钢轨铺设初期轮轨匹配不良的问题,设计出新轨头廓形75N钢轨,通过仿真计算对比分析了75 kg/m钢轨优化前后的接触状态及几何关系,并进行了75N钢轨在大秦重车线的试铺试验。研究结论:(1)75N钢轨显著改善了轮轨关系,轮轨主要接触位置更处于轨头踏面中心区域,轮轨接触应力大幅降低;(2)75N钢轨无论预打磨还是未进行预打磨,在直线上钢轨光带均较为居中,轨距角未出现肥边和剥离掉块,轨面光洁,钢轨使用状态较好;(3)在曲线上使用,75N钢轨均未出现轨距角肥边,表现出具有良好的轮轨接触关系;(4)该研究成果可应用于重载铁路钢轨的使用方面。  相似文献   

10.
研究目的:国内部分高速动车组在服役过程中出现不同程度的车体低频横向晃动(以下简称"晃车")问题,影响旅客乘坐舒适性。本文通过调研出现动车组晃车的线路,结合动力学仿真,从钢轨廓形这一方面对高速动车组晃车现象成因进行分析,并提出针对性的打磨措施。研究结论:(1)部分地段左右股钢轨工作边侧廓形与设计廓形60D相比负偏差量过大导致轮轨等效锥度过小,或左右股钢轨廓形不对称度过大导致轮轨等效锥度过小及左右轮径差变大,是造成动车组晃车的重要原因;(2)钢轨打磨可有效治理高速动车组低频横向晃动,车轮镟修对其改善效果有限;(3)车轮凹磨可增大轮轨等效锥度,可一定程度上抑制晃车的产生;(4)对晃车现象应早发现早治理,治理时应详细调查晃车区段的钢轨廓形,制定针对性的打磨方案并采用合理的打磨方式;(5)本研究成果可为铁路工务部门治理高速动车组晃车提供理论依据。  相似文献   

11.
张晓阳  单巍 《铁道建筑》2015,(3):119-121
针对高速铁路在运营中出现的动车组构架横向加速度超限和车体异常抖动现象,采取跟踪调查、轨道状态测试、台架试验和悬挂参数对比等方法研究得出,轮轨匹配关系不良是出现该现象的主要原因。通过理论分析和现场试验证明,采取钢轨打磨和车轮镟修等措施可改善轮轨匹配关系,有效缓解动车组异常振动现象。本文重点介绍了钢轨打磨的作用和方法,指出应按60N廓形或设计廓形打磨钢轨,使轮轨匹配具有合理的等效锥度,并对钢轨打磨的时机、周期、作业要求及验收提出了具体建议。  相似文献   

12.
针对60N廓形钢轨在高速铁路的适应性问题,对铺设60N廓形钢轨的高速铁路线路开展长期跟踪测试,分析60N廓形钢轨服役性能及养护维修情况;利用仿真手段,采用基于层次分析法的轮轨型面匹配综合评价方法,评价铺设60N廓形钢轨线路的标准及实测轮轨型面匹配状态。结果表明:铺设60N廓形钢轨的高速铁路钢轨服役状态良好,钢轨磨耗较小,加工硬化轻微,未出现接触疲劳伤损;1个车轮镟修周期内,兰新、西成及宝兰客专等高速铁路轮轨型面匹配状态均为优秀,且不同阶段轮轨匹配指数波动较小;综合钢轨服役性能、轮轨型面匹配状态、钢轨维修养护经济性及推广应用情况等几方面,可知60N廓形钢轨在高速铁路具备良好的适应性。  相似文献   

13.
针对高速铁路运营过程中出现的高速道岔直尖轨裂纹、弹条断裂、动车组构架横向加速度报警等典型案例进行研究,分析案例产生的原因,介绍采取的相应对策,阐明研究高速铁路轮轨关系的重要性。研究得出:应通过采取加强钢轨状态检查、加强钢轨养护以保持钢轨良好廓形;大力推广应用钢轨打磨新廓形;积极推广使用60N钢轨等措施改善高速铁路轮轨关系。该研究对进一步加强我国高速铁路轮轨关系维护、确保轮轨关系匹配良好,具有指导意义。  相似文献   

14.
针对哈齐(哈尔滨—齐齐哈尔)客运专线CRH5型动车组车体异常抖动的情况,调查了异常抖动的车辆状态和抖车区段的线路情况,计算分析了轮轨匹配等效锥度和轮轨接触几何关系。结果表明:随着车辆运行里程增加,车轮踏面凹形磨耗越来越严重,加之钢轨廓形打磨不到位使得轨距角凸出,致使轮轨匹配等效锥度达0.3以上,轮轨接触几何关系不良,车体出现6~8 Hz的高频振动。通过车轮镟修和钢轨打磨可有效降低轮轨匹配等效锥度,改善轮轨接触几何关系,解决动车组异常抖动的问题。  相似文献   

15.
轮轨接触几何匹配关系直接影响动车组的振动性能,轮轨接触不匹配可造成动车组构架横向加速度报警、车体晃车等问题。通过对镟修后初始等效锥度和车体晃车进行研究,提出镟修后初始等效锥度限值,评价镟修质量。通过对服役动车组等效锥度的跟踪、镟修到限等效锥度分布范围与报警轮对等效锥度值的统计,提出LMA、LMB、LMC、LMD型4种车轮踏面不同速度级的服役等效锥度限值,评估动车组横向稳定性。根据等效锥度限值对车轮进行管理可以控制轮轨型面与接触关系,有效缓解构架横向加速度报警与车体晃车问题,实现车轮状态修,提高镟修经济性。  相似文献   

16.
在某重载铁路铺设不同轨型、不同廓形、不同材质计8种组合的钢轨,通过实测和仿真,从轮轨接触几何关系、轨道结构动力学、货车动力学性能和钢轨使用性能等方面进行对比试验,对钢轨的廓形、轨型、材质进行分析和比选,提出30t轴重重载铁路的用轨策略。结果表明:与标准型面LM车轮接触时,60钢轨的轮轨接触光带偏向于轨距角一侧,60N和75N钢轨的则移向踏面中心部位,且轮轨接触应力显著降低;与实测廓形60,60N和75N钢轨接触时,车轮的等效锥度分别为与标准廓形75N钢轨接触的1.35~1.5,0.77~0.86和0.94~1倍;在8 000和12 000t载重条件下,60N和75N钢轨对轨道结构动力学指标的影响基本相当,60钢轨最大;3种廓形钢轨对货车动力学指标的影响不显著。建议在30t轴重重载铁路上,选用轨型为75kg·m~(-1)、廓形为75N的钢轨,在直线线路上铺设980 MPa级及以上、曲线线路上铺设1 300 MPa级及以上强度等级的钢轨,在小半径曲线且伤损形式以滚动接触疲劳为主的线路上可推广使用贝氏体钢轨。  相似文献   

17.
结合我国高速铁路车辆运用实践及试验数据,探讨高速铁路轮轨关系发展中的相关技术。研究高速铁路晃车、横向加速度报警的影响因素,指出车辆晃车与横向加速度报警具有对立统一性,并提出轮轨匹配等效锥度是诱发车辆横向加速度报警的主要原因;阐述高速铁路钢轨波磨及动车组车轮多边形发展的特点及影响因素,初步指出造成钢轨波磨与动车组车轮多边形的原因是轮轨系统不良而诱发的耦合振动,二者具有明显的相生相伴特征;针对目前轮轨关系存在的技术问题,建议开展线路条件下的轮轨关系服役技术研究;为维持良好的轮轨关系,应充分结合动车组运用状态、线路运用状态以及动车组运营组织特点,制定合理的车轮镟修及线路打磨策略。  相似文献   

18.
随着我国铁路客运的高速化,武广、合武、石武、郑西、汉宜、哈大、龙漳、杭深等高速铁路相继开通运营.其行车密度大、运营速度高、乘车舒适度好,不仅对轨道几何尺寸提出了很高要求,同时对轨面状态和钢轨轮廓也提出了极高要求.但由于钢轨在制造、运输、铺设、焊接等环节均存在难以避免的缺陷和病害,新轨铺设后难以完全适应动车组高速平稳运行要求,轴向加速度、减载率、动力学指标均无法有效控制,人体感觉有晃车、抖动等现象,严重影响运行品质,甚至威胁行车安全.钢轨预打磨作为高速线路开通运营前消除钢轨轨面病害、优化钢轨廓形、改善列车轮轨接触关系、消除晃车的有效维修手段之一,尤其在高速铁路开通前得到广泛应用.  相似文献   

19.
针对衡柳线部分运营动车组出现的车体晃动问题,项目组添乘了衡柳线运营动车组,定位出车体晃动区段,并对轮轨匹配关系进行测试与分析。通过将实测到的车轮踏面廓型和钢轨廓型数据导入仿真软件,仿真分析发现引起衡柳线晃车的主要原因为钢轨的过打磨导致旋修后车轮踏面与钢轨接触关系恶劣,引起了车体1~2Hz的低频晃动。通过对钢轨重新打磨,建立工务、车辆联合沟通机制,解决了衡柳线晃车问题。  相似文献   

20.
为解决动车组车辆在运行中出现的晃车及加速度异常情况,对磨耗后钢轨型面进行打磨,并通过仿真分析以及跟踪测量对打磨效果进行评估。分析结果表明,打磨后轮轨接触点对分布较打磨前更窄,分布于滚动圆附近,轮对发生横移时滚动圆半径变化较小,但由于其较小的接触面积导致接触应力较大,易产生较大的垂磨;打磨后钢轨匹配时由于等效锥度较小,对车辆运行稳定性及车体振动起到改善作用;打磨后钢轨的磨耗位置居中,磨耗面积小但垂直磨耗大,在运行一段时间后,轮轨接触光带会缓慢增大。因此,钢轨打磨缓解了车辆运行过程中构架横向加速度异常的情况,虽其滚动圆处垂磨较大,但其总磨耗量较打磨前小,且降低了对钢轨的损伤,有利于延长钢轨的寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号