首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 971 毫秒
1.
以一座大跨度曲线矮塔斜拉桥为研究对象,分析剪力滞、箱梁畸变、扭转等空间效应对梁体应力状态的影响。分析结果表明:考虑空间效应后,在移动荷载作用下,顶板拉应力和底板压应力增大,最大增幅分别为1.20 MPa和1.29 MPa,顶板压应力和底板拉应力减小,最大减幅分别为0.95 MPa和1.35 MPa;在恒载作用下,顶板压应力减小,最大减小2.16 MPa,底板压应力增大,最大增加3.27 MPa。在此基础上分析了半横隔板箱梁在斜拉索锚固处的剪力分配问题,结果表明,剪力由横隔板和翼缘板共同承担,且横隔板承担剪力不超过50%,可按照横隔板和翼缘板共同抗剪进行设计。  相似文献   

2.
研究目的:为研究高速铁路大跨连续钢桁梁柔性拱桥正交异性钢桥面板疲劳细节的局部受力,本文以银西高铁银川机场黄河特大桥为背景,建立横梁弧形切口以及U肋与顶板连接焊缝两处疲劳细节的精细化有限元模型,分析列车移动荷载作用下疲劳细节处的应力分布,并对比分析不同弧形切口形状和横梁腹板厚度对疲劳细节局部应力的影响规律。研究结论:(1)正交异性钢桥面的U肋-横梁位置的弧形切口处在移动活载下容易出现应力集中,且弧形切口起始处与弧形切口自由边所对应的最不利活载位置不同,在轨枕横向两侧端部下方的横梁弧形切口起始处以及弧形切口自由边容易出现最大主应力;(2)横梁板厚对弧形切口自由边的主压应力影响最大,且随板厚增大该处主压应力减小,对本工程当板厚由16 mm增加至20 mm时,主压应力减小幅度超过20%;(3)不同弧形切口形状对疲劳细节的局部应力也有较大影响,与原设计切口形状相比,日本设计规范所推荐切口形状的主应力极值最小;(4)为提高正交异性钢桥面板的疲劳特性,对U肋-横梁疲劳细节进行局部构造优化是必要的,研究成果对同类型结构的优化设计具有理论指导意义。  相似文献   

3.
高速铁路跨度40 m简支箱梁由残余徐变上拱控制结构设计。在全预应力体系范围内研究了采用降低跨中底缘压应力、提高预应力合力中心高度、缩短底板预应力束长度、增加梁高、提高混凝土强度等级、推迟二期恒载上桥时间、细化二期恒载分级等7种方法降低梁体残余徐变上拱的效果及适用性。受施工条件、技术经济性等因素限制,建议不采用前5种控制方法,而采用推迟二期恒载上桥时间和细化二期恒载分级的方法来控制40 m跨度简支箱梁残余徐变拱度。  相似文献   

4.
在建中的京沪高速南京大胜关长江大桥是1座6线铁路三主桁的六跨连续钢桁拱桥,桥面系为道碴整体桥面的多横梁体系,主桁下弦结点的构造很复杂。在全桥整体分析的基础上,对结点考虑构造细节作了更精确的局部分析。论述了结点的截取原则和范围,力边界条件、位移边界条件的施加方法,结点受力状态可能最不利活载工况的选取原则和选取方法。对结点选取5种可能最不利活载工况与恒载和风荷载组合后进行了局部分析。结果表明:局部分析可以获得结点板等部位整体分析中无法得到详细的应力分布;整体分析中与结点相连的杆端应力集中现象在局部分析中得到很大的,表明结点处加高、加厚、加强等构造措施很有效。  相似文献   

5.
为了解高速铁路槽形连续梁拱桥拱梁固结段的真实应力状态及验证局部分析中边界条件表达的准确性,以济青高速铁路(66.5+142+66.5) m双线有砟轨道预应力混凝土连续槽形梁拱桥为工程背景,利用FEA有限元软件建立细化的空间实体有限元模型,分析中支点横截面空间效应,并对局部模型的边界条件模拟的正确性进行验证。分析表明:中支点截面应力呈现明显的空间不规律现象,恒载比活载剪力滞效应更为明显,局部位置如拱肋与主梁连接部位、主梁下缘支座处、横隔板进人孔倒角处应力集中,应适当加强配筋,其余部位应力均满足要求,通过验证局部模型的内力分布,确保实体模型应力结果的准确性,保证结构安全。  相似文献   

6.
以新建沪昆高铁上跨武广客专某槽型断面独塔转体施工斜拉桥为工程实例,分别采用Midas/Civil和Ansys有限元程序建立整体和局部分析模型,模拟分析塔梁墩固结区应力的分布特征;探讨应力集中点附近区域的应力分布情况,明确其影响范围;沿指定路径追踪截面上的应力,揭示其分布规律。研究结果表明:槽型梁底板上下缘拉应力较大,需局部加强;塔柱边边缘、塔梁相交处及固结区内部孔洞附近存在应力集中现象,应适当设置圆倒角;最大压应力点附近区域应力迅速衰减,影响范围较小,最大拉应力点附近区域一定范围内存在较大的拉应力。  相似文献   

7.
为探究公路铁路活载对三塔超大跨公铁两用斜拉桥结构的影响,以某公铁长江大桥为研究背景,建立有限元全桥模型。利用影响线确定活载最不利加载位置,分析铁路活载和公路活载对主梁、主塔、斜拉索的影响。研究结果表明:随着铁路和公路活载加载长度的改变,桥梁结构响应在主梁竖向位移、主梁压应力、主塔顺桥向位移、主塔顺桥向弯矩、斜拉索索力增幅等方面表现出一定的规律性,铁路活载引起的桥梁结构响应是公路活载的3.2~4.2倍;对于主梁和主塔,当铁路活载加载长度分别增加5.4%、22.2%、18.2%,结构响应对应增大35.90%~36.90%,8.27%~13.07%,4.40%~8.38%;对于斜拉索,活载作用下索力最大增幅位于跨中附近;按照偏安全的到发线长度加载比按照列车可能最大长度加载,在桥梁设计上更具有安全冗余度。研究成果可为超大跨度铁路桥、公铁两用桥的设计提供参考。  相似文献   

8.
研究目的:由于国内首次采用跨座式单轨交通,其技术新、难度大、要求高,研究目的是为解决重庆轻轨2号线一期工程谢家湾立交L=40.5 m钢轨道梁的设计问题.研究结论:通过对重庆轻轨L=40.5 m钢轨道梁研究,得出如下结论:在列车静活载作用下,竖向挠度为0.044 7 m;最不利工况下,跨中截面顶板最大压应力为145.0 MPa、底板最大拉应力为128 MPa,支座附近腹板最大剪应力为47.4 MPa;两片箱梁横向中心距B=3.7 m,B/L>1/20;活荷载的疲劳应力范围为-70.5~73.7 MPa;实桥计算梁体侧向一阶自振频率为4.201 2 Hz,均满足<单轨规范>规定的性能指标要求.通过设计、施工精确控制,钢轨道梁的线形完全满足单轨车辆运行和旅客舒适性要求.  相似文献   

9.
以跨座式单轨交通线路上采用的钢混轨道梁桥为研究对象,利用大型通用有限元软件ANSYS建立三维有限元模型。采用容许应力法计算在4种组合下的竖向和横向位移,分析静力及自振特性。结果表明,轨道梁在静活载作用下竖向位移满足规范要求,采用多种工况组合分析时,顶板最小纵向正应力为–171.42 MPa,底板的最大纵向正应力为146.99 MPa,均出现在结构的跨中位置;横撑和下平纵联的横向正应力为115.63 MPa,剪应力范围为13.85~15.13 MPa,可以看出结构在各个荷载工况下应力水平较低,小于容许应力,轨道梁整体刚度大,具有较好的动力性能,结构设计合理、安全,可为此类桥梁的设计提供理论依据和技术参考。  相似文献   

10.
针对下承式钢桁半结合桥横梁的面外弯曲和混凝土桥面板受拉的问题,以64和96m下承式钢桁半结合桥为例,对3种现浇混凝土板施工方法桥面系的受力状态进行计算和分析比较。结果表明:采用由跨中向两端逐个节间固联纵、横梁后再浇筑混凝土板的方法,可使横梁的面外弯矩大幅度减少。据此提出预制板不设纵梁和待混凝土预制板全部上桥就位并释放横梁面外弯曲后再固联纵梁与横梁的2种施工方法。采用这2种施工方法可以基本消除一期恒载作用下横梁的面外弯矩和混凝土板中的轴向拉应力,如果再加上压重等措施,则可进一步消除或减少二期恒载和活载引起的横梁面外弯矩和混凝土板中的轴向拉应力。  相似文献   

11.
为研究设计速度350 km/h高速铁路斜拉桥钢-混组合箱梁的受力特性与桥面变形性能,采用Ansys软件建立赣江特大桥3个梁段的有限元模型,分析其应力分布特性;以应力等效的原则优化设计出相似比为1:3的全截面静载试验模型并开展受力传力及桥面变形特性研究.结果表明:钢-混组合箱梁在轴力及弯矩最不利荷载组合工况下,混凝土桥面...  相似文献   

12.
为分析混凝土收缩荷载对空心墩墩顶实体段应力的影响,以某单线铁路空心墩为例,对墩顶实体段进行结构有限元建模分析。分析表明:仅考虑竖向荷载(含动力系数)时,最大拉、压应力出现在顺桥向;考虑混凝土收缩荷载后,最大拉、压应力出现在横桥向,且拉应力数值增加明显,尤其是横桥向拉应力增加2~3倍,混凝土收缩荷载对墩顶实体段应力影响很大,设计配筋时应予以考虑。  相似文献   

13.
针对高速铁路下承式结合梁系杆拱桥,通过有限元分析,对纵横梁桥面系和密布横梁桥面系2种结合方式、混凝土桥面板不同的分块方式等问题进行研究。结果表明:纵横梁桥面体系在纵横梁交点处存在应力突变,其横梁应力较密布横梁高。对于密布横梁方案,随着混凝土断缝数量的增多,系梁挠度增幅不大,系梁和拱肋内力变化不大,但横梁应力有所降低,混凝土桥面板的整体应力大致呈降低趋势;在施工上,密布横梁体系比纵横梁体系简单方便。对于128 m跨度双线下承式钢系杆拱桥的桥面结合方式,建议采用密布横梁体系,桁距16 m,混凝土桥面板设置断缝,按5节间(25 m 27 m 24 m 27 m 25 m)布置。  相似文献   

14.
张捍东 《铁道建筑》2020,(3):104-107,117
以昌赣客运专线(35+40+60+300+60+40+35)m混合梁斜拉桥为例,建立了大跨度斜拉桥上无砟轨道精细化模型计算分析不同荷载作用下大跨度桥上无砟轨道纵向力。计算结果表明:在温度荷载作用下,钢轨纵向应力相对较大,最大拉应力为130.03 MPa,跨中轨道板纵向应力较小。在竖向荷载作用下,钢轨、轨道板和底座板的拉应力最大值出现在桥塔附近,压应力最大值出现在跨中附近,其中钢轨压应力最大值为15.02 MPa,底座板拉应力最大值为3.05 MPa。在列车制动作用下,钢轨、轨道板和底座板的拉应力最大值出现在跨中附近,压应力最大值出现在桥塔附近,轨道板和底座板纵向应力均较小。  相似文献   

15.
CRTS-Ⅰ型板式无砟轨道线路路基不均匀沉降限值研究   总被引:3,自引:0,他引:3  
基于列车—轨道耦合动力学理论,考虑无砟轨道各部件间及无砟轨道与路基间接触状态非线性,建立列车—板式无砟轨道—路基三维非线性有限元耦合动力学模型,进行自重荷载、轨道中长波随机不平顺、轨道短波随机不平顺、路基不均匀沉降荷载、无砟轨道板温度梯度荷载共同作用下,高速铁路CRTS-Ⅰ型板式无砟轨道路基不均匀沉降限值研究。结果表明:无砟轨道板温度梯度荷载对无砟轨道各部件受力均有较明显的影响,因此在进行无砟轨道线路路基不均匀沉降限值研究时有必要同时考虑无砟轨道板温度梯度荷载的影响;路基上CRTS-Ⅰ型板式无砟轨道线路的路基不均匀沉降限值由底座板疲劳破坏控制,路基不均匀沉降幅值达到7mm时无砟轨道底座板的最大拉力达到疲劳破坏限值1.674MPa,因此建议高速铁路CRTS-Ⅰ型板式无砟轨道路基的不均匀沉降限值为7mm/20m。  相似文献   

16.
地铁减振型无砟轨道结构中,CA砂浆层位于轨道板和隔振垫之间,起着支承、传载和调整的功能。由于隔振垫的存在,CA砂浆层极易发生破坏,因此需要全面地研究轨道结构参数对CA砂浆的应力影响规律。基于弹性地基梁体模型,研究轨道板的混凝土等级、CA砂浆弹性模量、隔振垫刚度及轨道板长度4个轨道结构参数对CA砂浆应力的影响规律,并通过应力匹配图得到合理的轨道结构参数匹配。得到的结论是CA砂浆弹性模量是对CA砂浆应力影响最敏感的参数;轨道板的混凝土等级、CA砂浆弹性模量、隔振垫刚度及轨道板长度4个轨道结构参数对CA砂浆最大拉应力的影响远大于对CA砂浆最大压应力的影响;通过应力匹配图,提出较为合理的轨道结构参数匹配:轨道板使用C80等级的混凝土、CA砂浆取中低弹模3 000 MPa、隔振垫刚度取0.04 N/mm~3、轨道板长度取4.097 m。  相似文献   

17.
通过在高速铁路正线上开展长期温度荷载下的原位监测和列车制动荷载下的实车试验,以及运用ABAQUS有限元软件的数值计算,进行高速铁路桥上CRTSⅡ型板式无砟轨道倒T型和Π型台后锚固体系的端刺结构在温度力和制动力作用下的受力变形特性研究。结果表明:在降温和升温过程中,端刺结构周围土体压应力较大值主要出现在主端刺摩擦板的下部和桥台方向首个小端刺的位置,端刺结构变形主要以顶部弯拉为主,整体纵向变形较小;在紧急制动荷载的作用下,钢轨纵向应力、端刺纵向位移均随着轴重的增加而明显增大,但端刺纵向位移绝对值较小,与温度荷载作用相比,紧急制动荷载作用对端刺结构的影响小。  相似文献   

18.
以CRTSⅡ型板式无砟轨道结构为研究对象,结合现有的砂浆快修技术,建立CRTSⅡ型板式无砟轨道快修砂浆的力学模型,采用有限元方法,计算列车荷载单独作用、正温度梯度和列车荷载共同作用以及负温度梯度和列车荷载共同作用3种工况下轨道板的最大拉、压应力,砂浆层最大垂向压应力和快修砂浆层以及轨道板的最大垂向位移。计算结果表明,在各种荷载的作用下,快修砂浆处的轨道结构受力均能够达到正常投入使用的标准,并且快修砂浆的应力值未超过其2 h强度值3 MPa,因此不需要对维修的轨道进行临时支护。  相似文献   

19.
为了研究在役铁路隧道在通车之后隧底脱空病害的问题,采用有限元理论,建立隧道脱空区域在围岩压力与25 t轴重列车动载作用下的数值计算模型,主要研究80 cm与40 cm脱空宽度分别距隧道中心线0,80 cm与160 cm时脱空区域的受力特性。结果表明:在围岩压力下,脱空区域中线上壁和外侧顶角混凝土中产生拉应力及内侧顶角中产生压应力,其中压应力对脱空的宽度更为敏感;同时施加列车动载作用时,脱空区域上壁出现了竖向动应力与横向拉应力,得到了脱空区域力学指标的最大响应值及其出现的具体位置,宽度的增加对脱空区上壁横向拉应力更为显著,上壁横向拉应力增幅超过200%,竖向动应力增幅达50%。因此,隧底脱空区周围应力分布复杂,拉应力与压应力在脱空区域同时存在,应力突变严重,对脱空现象应及时组织处理。  相似文献   

20.
FWD能较好地模拟动荷载的作用,在对FWD动态弯沉盆的特性分析的基础上,以ANSYS有限元计算软件为工具,对FWD荷载作用于纵缝板边缘中部、板角、板中位置时的动力特性进行了模拟,得到了不同结构层厚度和材料强度的水泥混凝土路面结构在标准动荷载作用下的层间应力以及路表弯沉的变化规律,研究成果为水泥混凝土路面结构设计、了解路面结构在动载作用下的力学响应提供了理论依据和参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号