首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Abstract

In large metropolitan areas, public transit is a major mode choice of commuters for their daily travel, which has an important role in relieving congestion on transportation corridors. The purpose of this study is to develop a model which optimizes service patterns (SPs) and frequencies that yield minimum cost transit operation. Considering a general transit route with given stops and origin-destination demand, the proposed model consists of an objective total cost function and a set of constraints to ensure frequency conservation and sufficient capacity subject to operable fleet size. A numerical example is provided to demonstrate the effectiveness of the developed model, in which the demand and facility data of a rail transit route were given. Results show that the proposed model can be applied to optimize integrated SPs and headways that significantly reduce the total cost, while the resulting performance indicators are generated.  相似文献   

2.
Abstract

This paper investigates a transportation scheduling problem in large-scale construction projects under a fuzzy random environment. The problem is formulated as a fuzzy, random multi-objective bilevel optimization model where the construction company decides the transportation quantities from every source to every destination according to the criterion of minimizing total transportation cost and transportation time on the upper level, while the transportation agencies choose their transportation routes such that the total travel cost is minimized on the lower level. Specifically, we model both travel time and travel cost as triangular fuzzy random variables. Then the multi-objective bilevel adaptive particle swarm optimization algorithm is proposed to solve the model. Finally, a case study of transportation scheduling for the Shuibuya Hydropower Project in China is used as a real world example to demonstrate the practicality and efficiency of the optimization model and algorithm.  相似文献   

3.
ABSTRACT

This paper describes the development of a probabilistic formulation that provides global optimum selection and allocation of a fleet of buses in a private transportation system of an organization where a third party is hired to provide transportation for its employees and their dependents. In this private transportation system, a fleet of buses is to be selected and allocated to serve employees and their independents on different prescheduled trips along different routes from the organization’s headquarters and residential compound where round-trip times of scheduled trips are subject to uncertainty due to random delays. We propose a probabilistic approach based on 0-1 integer programming for the selection and allocation to determine the optimal number and size of buses assigned to a set of prescheduled trips in a particular time interval. Examples and a case study are presented to illustrate the applicability and suitability of the proposed approach.  相似文献   

4.
Increasing regional mobility demand amid rising roadway congestion has motivated plans for passenger ferry expansion and modernization in many parts of the US. While this trend applies to ferry systems in Alaska, New York, Boston, and Washington state, efforts to expand ferry service in the San Francisco Bay Area are unique in scale and vision. Integrating ferry service into the regional, door-to-door transit system can significantly increase water-crossing capacity for commuters. However, to realize this potential, the ferry industry must meet several challenges associated with growth, including environmental impacts. In particular, concern over air pollution emissions from marine engines is motivating new comparisons between ferries and other transportation modes in terms of both mobility and air pollution. This paper describes the current debate about ferry system operation and expansion, and presents a parametric analysis comparing existing, uncontrolled ferry emissions to automobiles. Under all reasonable assumptions, we show that diesel-powered ferries without emissions controls will produce more NOx and PM, but less CO per passenger-trip than if those people commuted by car under current conditions. This paper also projects the emissions from the expanded ferry system proposed for the San Francisco Bay Area, showing that a larger ferry fleet equipped with new engines meeting future EPA emissions standards could become one of the major non-road NOx sources in the region. We conclude by outlining the alternatives and challenges to reduce ferry emissions so that they are more comparable to automobile emissions. Policy implications of these alternatives are also discussed.  相似文献   

5.
Bus transit is often promoted as a green form of transportation, but surprisingly little research has been done on how to run transit systems in a green manner. Both vehicle task assignment and purchase models are generally constructed to minimize financial costs. Integrating vehicle task assignment with purchase decisions is made challenging by the different time scales involved. An integer programming approach is used to combine vehicle purchase, retrofit and aggregated task assignment decisions. The formulation is designed to operate in sequence with traditional vehicle task assignment models, to add emissions and long term financial cost elements to the objective, while maintaining computational tractability and feasible input data requirements. In a case study, a transit agency saves money in the long term by using stimulus money to buy CNG infrastructure instead of purchasing only new buses. Carbon prices up to $400/(ton CO2 equivalent) do not change vehicle purchase decisions, but higher carbon prices can cause more diesel hybrid purchases, at a high marginal cost. Although the motivation and numerical case study are from the US transit industry, the model is formulated to be widely applicable to green fleet management in multiple contexts.  相似文献   

6.
Abstract

This paper concerns the newspaper distribution problem. It addresses the transportation of newspapers from printing plant to newsagents with distribution vehicles under various particular constraints. The objective is to minimize the distance traveled by the vehicles and/or the number of vehicles. In this study, the routes for vehicles of a leading newspaper distributor company in the Turkish press sector are examined. The problem is defined as determining optimal delivery routes for a fleet of homogeneous vehicles, starting and ending at the printing plant that is required to serve a number of geographically dispersed newsagents with known demands under capacity and time constraints, while minimizing the total distribution cost. An integar linear programming model is proposed as a solution using Cplex. Computational results demonstrate that the proposed model is fast and able to find optimal solutions for problem scenarios with up to 55 newsagents within reasonable computing times. It was found that the proposed model reduced the delivery cost by 21% on average when compared to the current manual method. The results show that this model is adequate for medium-sized distribution problems.  相似文献   

7.
The transportation sector is undergoing three revolutions: shared mobility, autonomous driving, and electrification. When planning the charging infrastructure for electric vehicles, it is critical to consider the potential interactions and synergies among these three emerging systems. This study proposes a framework to optimize charging infrastructure development for increasing electric vehicle (EV) adoption in systems with different levels of autonomous vehicle adoption and ride sharing participation. The proposed model also accounts for the pre-existing charging infrastructure, vehicle queuing at the charging stations, and the trade-offs between building new charging stations and expanding existing ones with more charging ports.Using New York City (NYC) taxis as a case study, we evaluated the optimum charging station configurations for three EV adoption pathways. The pathways include EV adoption in a 1) traditional fleet (non-autonomous vehicles without ride sharing), 2) future fleet (fully autonomous vehicles with ride sharing), and 3) switch-over from traditional to future fleet. Our results show that, EV adoption in a traditional fleet requires charging infrastructure with fewer stations that each has more charging ports, compared to the future fleet which benefits from having more scattered charging stations. Charging will only reduce the service level by 2% for a future fleet with 100% EV adoption. EV adoption can reduce CO2 emissions of NYC taxis by up to 861 Tones/day for the future fleet and 1100 Tones/day for the traditional fleet.  相似文献   

8.
The tremendous use of hazardous materials has promoted the economic development, which also brings about a growing risk causing a widespread concern. In this work, we consider a location-scheduling problem on hazardous materials transportation under the assumption that transportation risks are time-dependent fuzzy random variables. First, we formulate a scheduling optimization model and design a fuzzy random simulation based genetic algorithm to optimize the departure time and dwell times for each depot–customer pair. Then we establish an expected value model and design a modified particle swarm optimization algorithm to minimize the en route risks and site risks. Finally, numerical examples are given to illustrate the effectiveness of the proposed models and algorithms.  相似文献   

9.

A methodology for comparing phased implementation plans for a new fixed guideway transit system in an urban area is presented. Four assumptions are made: (1) the guideway system replaces existing or planned bus service, (2) superior service on the new system results in increased ridership when compared to buses; (3) presence of the guideway facility redirects outward urban growth resulting in additional ridership, and (4) conversely, the absence of any action on the new guideway facility reinforces a diffuse urban growth pattern that creates an irreversible loss of transit ridership. The economic comparision of alternative plans includes total as well as “relative” inflation of principal cost components. A key feature of the proposed methodology is including in the comparisons the costs of private automobile mileage that could have been replaced by transit. These costs are expressed as “fuel” and “all other” automobile costs; favorable transit system implementation schedules can then be identified as a function of parametrically assumed values for these two unit costs. A hypothetical example demonstrates the proposed method.  相似文献   

10.
Abstract

This paper revisits the classical transit scheduling problem and investigates the relationship between stop spacing and headway, considering realistic wait time and operable transit capacity. Headway and stop spacing are important determinants for planning a transit system, which influence the service level as well as the cost of operation. A mathematical model is developed, and the objective function is user travel time which is minimized by the optimized stop spacing and headway, subject to the constraints of operable fleet size and route capacity. Optimal stop spacing and headway solutions are obtained in a numerical example. Sensitivity analysis is conducted, and the effect of model parameters on user travel time is explored.  相似文献   

11.
Abstract

On-road light-duty vehicles (LDVs) play an important role in contributing to urban air pollution. Although vehicles are getting cleaner, regional growth in vehicle population and vehicle miles traveled would somewhat offset California's efforts in transportation pollution reduction. To better understand the role of LDVs in future air pollution, we conduct a case study for Sacramento, California, and investigate future trends in urban air pollution attributable to the light-duty fleet. Results indicate that ambient concentrations of CO, NO x , and total organic gases (TOGs) caused by future light-duty fleets would dramatically decrease over coming years. The resulting concentrations in 2030 might be as low as approximately 20% of the 2005 concentrations. These reflect the improvements in vehicle/fuel technologies and standards in California. However, the future particulate matter (PM10) pollution could be slightly worse than that caused by the 2005 fleet. This is a result of the growing fleet-average emission factors of particulates from 2005 to 2030. For purposes of future particulate control, more attention needs to be paid to LDVs, besides heavy-duty vehicles.  相似文献   

12.
ABSTRACT

Transit-oriented development (TOD) is a popular planning strategy used to maximize accessibility to transit for various trip purposes. The quantitative effects of TOD on travel mode shift and traffic congestion have not been extensively tested in the current literature. This paper utilizes a seemingly unrelated regressions (SUR) mode share model and a mesoscopic dynamic traffic assignment (DTA) model to analyze the impact of a planned TOD in Maryland. The proposed model aims at improving the understanding of the quantitative impacts of such a TOD on mode share and traffic congestion. The main result of the mode share model indicates that the increase in transit ridership for a transit accessible shopping center is not that significant. Local traffic conditions will deteriorate due to a lack of investment in road infrastructure planned for the TOD area. The proposed method could be a valuable tool for other indicative land development or transportation policy analyses.  相似文献   

13.
ABSTRACT

Identifying the spatial distribution of travel activities can help public transportation managers optimize the allocation of resources. In this paper, transit networks are constructed based on traffic flow data rather than network topologies. The PageRank algorithm and community detection method are combined to identify the spatial distribution of public transportation trips. The structural centrality and PageRank values are compared to identify hub stations; the community detection method is applied to reveal the community structures. A case study in Guangzhou, China is presented. It is found that the bus network has a community structure, significant weekday commuting and small-world characteristics. The metro network is tightly connected, highly loaded, and has no obvious community structure. Hub stations show distinct differences in terms of volume and weekend/weekday usage. The results imply that the proposed method can be used to identify the spatial distribution of urban public transportation and provide a new study perspective.  相似文献   

14.
With increasing attention being paid to greenhouse gas (GHG) emissions, the transportation industry has become an important focus of approaches to reduce GHG emissions, especially carbon dioxide equivalent (CO2e) emissions. In this competitive industry, of course, any new emissions reduction technique must be economically attractive and contribute to good operational performance. In this paper, a continuous-variable feedback control algorithm called GEET (Greening via Energy and Emissions in Transportation) is developed; customer deliveries are assigned to a fleet of vehicles with the objective function of Just-in-Time (JIT) delivery and fuel performance metrics akin to the vehicle routing problem with soft time windows (VRPSTW). GEET simultaneously determines vehicle routing and sets cruising speeds that can be either fixed for the entire trip or varied dynamically based on anticipated performance. Dynamic models for controlling vehicle cruising speed and departure times are proposed, and the impact of cruising speed on JIT performance and fuel performance are evaluated. Allowing GEET to vary cruising speed is found to produce an average of 12.0–16.0% better performance in fuel cost, and −36.0% to +16.0% discrepancy in the overall transportation cost as compared to the Adaptive Large Neighborhood Search (ALNS) heuristic for a set of benchmark problems. GEET offers the advantage of extremely fast computational times, which is a substantial strength, especially in a dynamic transportation environment.  相似文献   

15.
Most transit agencies require government support for the replacement of their aging fleet. A procedure for equitable resource allocation among competing transit agencies for the purpose of transit fleet management is presented in this study. The proposed procedure is a 3-dimensional model that includes the choice of a fleet improvement program, agencies that may receive them, and the timing of investments. Earlier efforts to solve this problem involved the application of 1- or 2-dimensional models for each year of the planning period. These may have resulted in suboptimal solution as the models are blind to the impact of the fleet management program of the subsequent years. Therefore, a new model to address a long-term planning horizon is proposed. The model is formulated as a non-linear optimization problem of maximizing the total weighted average remaining life of the fleet subjected to improvement program and budgetary constraints. Two variants of the problem, one with an annual budget constraint and the other with a single budget constraint for the entire planning period, are formulated. Two independent approaches, namely, branch and bound algorithm and genetic algorithm are used to obtain the solution. An example problem is solved and results are discussed in details. Finally, the model is applied to a large scale real-world problem and a detailed analysis of the results is presented.  相似文献   

16.
Abstract

The purpose of this paper was to show how vehicle positioning data collected through global positioning systems (GPS) or similar applications can be used in quality control programs of public transit operators to better assess the quality and performance of transportation services, and improve them. The paper describes the concept of the integration between quality control programs and vehicle monitoring systems, presents a case study where the concept has been successfully implemented, and discusses the benefits from the adoption of such an approach. The implementation of the concept is characterized by efficiency, accuracy, reliability, and optimization: efficiency in terms of data flow; accuracy and reliability in terms of quality and performance indicator values; and optimization in terms of optimum use of the available information technology infrastructure. The paper places particular emphasis on aspects relating to the interface between urban transportation services, vehicle positioning technology, and policy-making.  相似文献   

17.
Abstract

This study focuses on the mode and route choices of a logistics company in a situation involving intercity transportation with networks of surface roads, highways and a railway. A method of transportation network analysis is applied to construct a logistics company mode and route choice models with the objective of minimizing total distribution and external costs. This study also assumes that the fleet number and vehicle capacities are given. Freight distributed from a distribution center to given retailers or consumers via surface road/highway links or via intermodal transportation involving surface road/highway links and a railway. In terms of model construction, this study first explores the routing and sequence of the retailers and consumers served by each vehicle. Second, the study internalizes the external cost of air pollution into the total distribution cost, to analyze the influences of external cost burdens on a logistics company mode and route choices from a user charge perspective. Finally, the study designs a heuristic algorithm for solving the above models, and illuminates the modeling process using a numerical example.  相似文献   

18.
Abstract

In this paper, we present a dynamic traffic assignment-simulation modeling framework (DYNASMART-P) to support the evaluation and planning of Bus Rapid Transit (BRT) services in urban transportation networks. The model represents the different characteristics associated with BRT operations such as: exclusive right-of-way lanes, limited-stop service, signal prioritization at congested intersections, and enhanced bus stops to reduce passenger boarding times. A set of simulation experiments is conducted using the model to study the impact of introducing a hypothetical BRT service in the Knoxville area in the State of Tennessee. In these experiments, the different operational characteristics of BRT are evaluated in terms of potential impact on transit ridership and on the interacting auto traffic. The results illustrate the advantages of BRT for increasing transit ridership and improving overall system performance.  相似文献   

19.
Because transportation systems involve massive complex human activities, there exist substantial unpredictable uncertainties of the traffic demands. This paper aims at presenting an H control method for transportation network that can enhance the tolerance of the system due to these uncertainties. In particular, the store‐and‐forward approach is applied to model the system into a linear form. Then, a detailed controllability analysis shows that the system is not completely controllable by taking the constraints on the green times into account. This makes difficult to apply directly the H method. To overcome this difficulty, this paper isolates the fully controllable part of the transportation system, and the problem of disturbance attenuation is then solved by means of a convex optimization with linear matrix inequality. Finally, the simulation of a large‐scale hypothetical network is carried out to illustrate the results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

Estimation of the origin–destination (O–D) trip demand matrix plays a key role in travel analysis and transportation planning and operations. Many researchers have developed different O–D matrix estimation methods using traffic counts, which allow simple data collection as opposed to the costly traditional direct estimation methods based on home and roadside interviews.

In this paper, we present a new fuzzy model to estimate the O–D matrix from traffic counts. Since link data only represent a snapshot situation, resulting in inconsistency of data and poor quality of the estimated O–Ds, the proposed method considers the link data as a fuzzy number that varies within a certain bandwidth. Shafahi and Ramezani's fuzzy assignment method is improved upon and used to assign the estimated O–D matrix, which causes the assigned volumes to be fuzzy numbers similar to what is proposed for observed link counts. The shortest path algorithm of the proposed method is similar to the Floyd–Warshall algorithm, and we call it the Fuzzy Floyd–Warshall Algorithm. A new fuzzy comparing index is proposed by improving the fuzzy comparison method developed by Dubois and Prade to estimate and compare the distance between the assigned and observed link volumes. The O–D estimation model is formulated as a convex minimization problem based on the proposed fuzzy index to minimize the fuzzy distance between the observed and assigned link volumes. A gradient-based method is used to solve the problem. To ensure the original O–D matrix does not change more than necessary during the iterations, a fuzzy rule-based approach is proposed to control the matrix changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号