首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
With trajectory data, a complete microscopic and macroscopic picture of traffic flow operations can be obtained. However, trajectory data are difficult to observe over large spatiotemporal regions—particularly in urban contexts—due to practical, technical and financial constraints. The next best thing is to estimate plausible trajectories from whatever data are available. This paper presents a generic data assimilation framework to reconstruct such plausible trajectories on signalized urban arterials using microscopic traffic flow models and data from loops (individual vehicle passages and thus vehicle counts); traffic control data; and (sparse) travel time measurements from whatever source available. The key problem we address is that loops suffer from miss- and over-counts, which result in unbounded errors in vehicle accumulations, rendering trajectory reconstruction highly problematic. Our framework solves this problem in two ways. First, we correct the systematic error in vehicle accumulation by fusing the counts with sparsely available travel times. Second, the proposed framework uses particle filtering and an innovative hierarchical resampling scheme, which effectively integrates over the remaining error distribution, resulting in plausible trajectories. The proposed data assimilation framework is tested and validated using simulated data. Experiments and an extensive sensitivity analysis show that the proposed method is robust to errors both in the model and in the measurements, and provides good estimations for vehicle accumulation and vehicle trajectories with moderate sensor quality. The framework does not impose restrictions on the type of microscopic models used and can be naturally extended to include and estimate additional trajectory attributes such as destination and path, given data are available for assimilation.  相似文献   

2.
This paper presents a computationally efficient and theoretically rigorous dynamic traffic assignment (DTA) model and its solution algorithm for a number of emerging emissions and fuel consumption related applications that require both effective microscopic and macroscopic traffic stream representations. The proposed model embeds a consistent cross-resolution traffic state representation based on Newell’s simplified kinematic wave and linear car following models. Tightly coupled with a computationally efficient emission estimation package MOVES Lite, a mesoscopic simulation-based dynamic network loading framework DTALite is adapted to evaluate traffic dynamics and vehicle emission/fuel consumption impact of different traffic management strategies.  相似文献   

3.
This paper presents a trajectory clustering method to discover spatial and temporal travel patterns in a traffic network. The study focuses on identifying spatially distinct traffic flow groups using trajectory clustering and investigating temporal traffic patterns of each spatial group. The main contribution of this paper is the development of a systematic framework for clustering and classifying vehicle trajectory data, which does not require a pre-processing step known as map-matching and directly applies to trajectory data without requiring the information on the underlying road network. The framework consists of four steps: similarity measurement, trajectory clustering, generation of cluster representative subsequences, and trajectory classification. First, we propose the use of the Longest Common Subsequence (LCS) between two vehicle trajectories as their similarity measure, assuming that the extent to which vehicles’ routes overlap indicates the level of closeness and relatedness as well as potential interactions between these vehicles. We then extend a density-based clustering algorithm, DBSCAN, to incorporate the LCS-based distance in our trajectory clustering problem. The output of the proposed clustering approach is a few spatially distinct traffic stream clusters, which together provide an informative and succinct representation of major network traffic streams. Next, we introduce the notion of Cluster Representative Subsequence (CRS), which reflects dense road segments shared by trajectories belonging to a given traffic stream cluster, and present the procedure of generating a set of CRSs by merging the pairwise LCSs via hierarchical agglomerative clustering. The CRSs are then used in the trajectory classification step to measure the similarity between a new trajectory and a cluster. The proposed framework is demonstrated using actual vehicle trajectory data collected from New York City, USA. A simple experiment was performed to illustrate the use of the proposed spatial traffic stream clustering in application areas such as network-level traffic flow pattern analysis and travel time reliability analysis.  相似文献   

4.
Traffic congestion and energy issues have set a high bar for current ground transportation systems. With advances in vehicular communication technologies, collaborations of connected vehicles have becoming a fundamental block to build automated highway transportation systems of high efficiency. This paper presents a distributed optimal control scheme that takes into account macroscopic traffic management and microscopic vehicle dynamics to achieve efficiently cooperative highway driving. Critical traffic information beyond the scope of human perception is obtained from connected vehicles downstream to establish necessary traffic management mitigating congestion. With backpropagating traffic management advice, a connected vehicle having an adjustment intention exchanges control-oriented information with immediately connected neighbors to establish potential cooperation consensus, and to generate cooperative control actions. To achieve this goal, a distributed model predictive control (DMPC) scheme is developed accounting for driving safety and efficiency. By coupling the states of collaborators in the optimization index, connected vehicles achieve fundamental highway maneuvers cooperatively and optimally. The performance of the distributed control scheme and the energy-saving potential of conducting such cooperation are tested in a mixed highway traffic environment by the means of microscopic simulations.  相似文献   

5.
Research on connected vehicle environment has been growing rapidly to investigate the effects of real-time exchange of kinetic information between vehicles and road condition information from the infrastructure through radio communication technologies. A fully connected vehicle environment can substantially reduce the latency in response caused by human perception-reaction time with the prospect of improving both safety and comfort. This study presents a dynamical model of route choice under a connected vehicle environment. We analyze the stability of headways by perturbing various factors in the microscopic traffic flow model and traffic flow dynamics in the car-following model and dynamical model of route choice. The advantage of this approach is that it complements the macroscopic traffic assignment model of route choice with microscopic elements that represent the important features of connected vehicles. The gaps between cars can be decreased and stabilized even in the presence of perturbations caused by incidents. The reduction in gaps will be helpful to optimize the traffic flow dynamics more easily with safe and stable conditions. The results show that the dynamics under the connected vehicle environment have equilibria. The approach presented in this study will be helpful to identify the important properties of a connected vehicle environment and to evaluate its benefits.  相似文献   

6.
Traditional macroscopic traffic flow modeling framework adopts the spatial–temporal coordinate system to analyze traffic flow dynamics. With such modeling and analysis paradigm, complications arise for traffic flow data collected from mobile sensors such as probe vehicles equipped with mobile phones, Bluetooth, and Global Positioning System devices. The vehicle‐based measurement technologies call for new modeling thoughts that address the unique features of moving measurements and explore their full potential. In this paper, we look into the concept of vehicular fundamental diagram (VFD) and discuss its engineering implications. VFD corresponds to a conventional fundamental diagram (FD) in the kinematic wave (KW) theory that adopts space–time coordinates. Similar to the regular FD in the KW theory, VFD encapsulates all traffic flow dynamics. In this paper, to demonstrate the full potential of VFD in interpreting multilane traffic flow dynamics, we generalize the classical Edie's formula and propose a direct approach of reconstructing VFD from traffic measurements in the vehicular coordinates. A smoothing algorithm is proposed to effectively reduce the nonphysical fluctuation of traffic states calculated from multilane vehicle trajectories. As an example, we apply the proposed methodology to explore the next‐generation simulation datasets and identify the existence and forms of shock waves in different coordinate systems. Our findings provide empirical justifications and further insight for the Lagrangian traffic flow theory and models when applied in practice. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
There has been rapid growth in interest in real-time transport strategies over the last decade, ranging from automated highway systems and responsive traffic signal control to incident management and driver information systems. The complexity of these strategies, in terms of the spatial and temporal interactions within the transport system, has led to a parallel growth in the application of traffic microsimulation models for the evaluation and design of such measures, as a remedy to the limitations faced by conventional static, macroscopic approaches. However, while this naturally addresses the immediate impacts of the measure, a difficulty that remains is the question of how the secondary impacts, specifically the effect on route and departure time choice of subsequent trips, may be handled in a consistent manner within a microsimulation framework.The paper describes a modelling approach to road network traffic, in which the emphasis is on the integrated microsimulation of individual trip-makers’ decisions and individual vehicle movements across the network. To achieve this it represents directly individual drivers’ choices and experiences as they evolve from day-to-day, combined with a detailed within-day traffic simulation model of the space–time trajectories of individual vehicles according to car-following and lane-changing rules and intersection regulations. It therefore models both day-to-day and within-day variability in both demand and supply conditions, and so, we believe, is particularly suited for the realistic modelling of real-time strategies such as those listed above. The full model specification is given, along with details of its algorithmic implementation. A number of representative numerical applications are presented, including: sensitivity studies of the impact of day-to-day variability; an application to the evaluation of alternative signal control policies; and the evaluation of the introduction of bus-only lanes in a sub-network of Leeds. Our experience demonstrates that this modelling framework is computationally feasible as a method for providing a fully internally consistent, microscopic, dynamic assignment, incorporating both within- and between-day demand and supply dynamics.  相似文献   

8.
Traffic flow theory has come to a point where conventional, fixed time averaged data are limiting our insight into critical behavior both at the macroscopic and microscopic scales. This paper develops a methodology to measure relationships of density and vehicle spacing on freeways. These relationships are central to most traffic flow theories but have historically been difficult to measure empirically. The work leads to macroscopic flow-density and microscopic speed-spacing relationships in the congested regime derived entirely from dual loop detector data and then verified against the NGSIM data set. The methodology eliminates the need to seek out stationary conditions and yields clean relationships that do not depend on prior assumptions of the curve shape before fitting the data. Upon review of the clean empirical relationships a key finding of this work is the fact that many of the critical parameters of the macroscopic flow-density and microscopic speed-spacing relationships depend on vehicle length, e.g., upstream moving waves should travel through long vehicles faster than through short vehicles. Thus, the commonly used assumption of a homogeneous vehicle fleet likely obscures these important phenomena. More broadly, if waves travel faster or slower depending on the length of the vehicles through which the waves pass, then the way traffic is modeled should be updated to explicitly account for inhomogeneous vehicle lengths.  相似文献   

9.
This paper shows that the behavior of driver models, either individually or entangled in stochastic traffic simulation, is affected by the accuracy of empirical vehicle trajectories. To this aim, a “traffic-informed” methodology is proposed to restore physical and platoon integrity of trajectories in a finite time–space domain, and it is applied to one NGSIM I80 dataset. However, as the actual trajectories are unknown, it is not possible to verify directly whether the reconstructed trajectories are really “nearer” to the actual unknowns than the original measurements. Therefore, a simulation-based validation framework is proposed, that is also able to verify indirectly the efficacy of the reconstruction methodology. The framework exploits the main feature of NGSIM-like data that is the concurrent view of individual driving behaviors and emerging macroscopic traffic patterns. It allows showing that, at the scale of individual models, the accuracy of trajectories affects the distribution and the correlation structure of lane-changing model parameters (i.e. drivers heterogeneity), while it has very little impact on car-following calibration. At the scale of traffic simulation, when models interact in trace-driven simulation of the I80 scenario (multi-lane heterogeneous traffic), their ability to reproduce the observed macroscopic congested patterns is sensibly higher when model parameters from reconstructed trajectories are applied. These results are mainly due to lane changing, and are also the sought indirect validation of the proposed data reconstruction methodology.  相似文献   

10.
In the area of active traffic management, new technologies provide opportunities to improve the use of current infrastructure. Vehicles equipped with in-car communication systems are capable of exchanging messages with the infrastructure and other vehicles. This new capability offers many opportunities for traffic management. This paper presents a novel merging assistant strategy that exploits the communication capabilities of intelligent vehicles. The proposed control requires the cooperation of equipped vehicles on the main carriageway in order to create merging gaps for on-ramp vehicles released by a traffic light. The aim is to reduce disruptions to the traffic flow created by the merging vehicles. This paper focuses on the analytical formulation of the control algorithm, and the traffic flow theories used to define the strategy. The dynamics of the gap formation derived from theoretical considerations are validated using a microscopic simulation. The validation indicates that the control strategy mostly developed from macroscopic theory well approximates microscopic traffic behaviour. The results present encouraging capabilities of the system. The size and frequency of the gaps created on the main carriageway, and the space and time required for their creation are compatible with a real deployment of the system. Finally, we summarise the results of a previous study showing that the proposed merging strategy reduces the occurrence of congestion and the number of late-merging vehicles. This innovative control strategy shows the potential of using intelligent vehicles for facilitating the merging manoeuvre through use of emerging communications technologies.  相似文献   

11.
To assess safety impacts of untried traffic control strategies, an earlier study developed a vehicle dynamics model‐integrated (i.e., VISSIM‐CarSim‐SSAM) simulation approach and evaluated its performance using surrogate safety measures. Although the study found that the integrated simulation approach was a superior alternative to existing approaches in assessing surrogate safety, the computation time required for the implementation of the integrated simulation approach prevents it from using it in practice. Thus, this study developed and evaluated two types of models that could replace the integrated simulation approach with much faster computation time, feasible for real‐time implementation. The two models are as follows: (i) a statistical model (i.e., logit model) and (ii) a nonparametric approach (i.e., artificial neural network). The logit model and the neural network model were developed and trained on the basis of three simulation data sets obtained from the VISSIM‐CarSim‐SSAM integrated simulation approach, and their performances were compared in terms of the prediction accuracy. These two models were evaluated using six new simulation data sets. The results indicated that the neural network approach showing 97.7% prediction accuracy was superior to the logit model with 85.9% prediction accuracy. In addition, the correlation analysis results between the traffic conflicts obtained from the neural network approach and the actual traffic crash data collected in the field indicated a statistically significant relationship (i.e., 0.68 correlation coefficient) between them. This correlation strength is higher than that of the VISSIM only (i.e., the state of practice) simulation approach. The study results indicated that the neural network approach is not only a time‐efficient way to implementing the VISSIM‐CarSim‐SSAM integrated simulation but also a superior alternative in assessing surrogate safety. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Due to the difficulty of obtaining accurate real-time visibility and vehicle based traffic data at the same time, there are only few research studies that addressed the impact of reduced visibility on traffic crash risk. This research was conducted based on a new visibility detection system by mounting visibility sensor arrays combined with adaptive learning modules to provide more accurate visibility detections. The vehicle-based detector, Wavetronix SmartSensor HD, was installed at the same place to collect traffic data. Reduced visibility due to fog were selected and analyzed by comparing them with clear cases to identify the differences based on several surrogate measures of safety under different visibility classes. Moreover, vehicles were divided into different types and the vehicles in different lanes were compared in order to identify whether the impact of reduced visibility due to fog on traffic crash risk varies depending on vehicle types and lanes. Log-Inverse Gaussian regression modeling was then applied to explore the relationship between time to collision and visibility together with other traffic parameters. Based on the accurate visibility and traffic data collected by the new visibility and traffic detection system, it was concluded that reduced visibility would significantly increase the traffic crash risk especially rear-end crashes and the impact on crash risk was different for different vehicle types and for different lanes. The results would be helpful to understand the change in traffic crash risk and crash contributing factors under fog conditions. We suggest implementing the algorithms in real-time and augmenting it with ITS measures such as VSL and DMS to reduce crash risk.  相似文献   

13.
This contribution presents the results of a microscopic traffic simulation study of the potential effects of an overtaking assistant for two-lane rural roads. The overtaking assistant is developed to support drivers in judging whether or not an overtaking opportunity can be accepted based on the distance to the next oncoming vehicle. Drivers have been found to consider this to be a difficult part of an overtaking manoeuvre. The assistant’s effects on traffic efficiency, driver comfort and road safety have been investigated using traffic simulation. The results indicate that this type of overtaking assistant can provide safety benefits in terms of increased average time-to-collision to the next oncoming vehicle during overtaking manoeuvres. This safety benefit can be achieved without negative consequences for traffic efficiency and driver comfort. A driver assistance system that supports the distance judging part of overtaking manoeuvres can therefore contribute to improved traffic conditions on the two-lane rural roads of the future.  相似文献   

14.
A widespread deployment of vehicle automation and communication systems (VACS) is expected in the next years. This may lead to improvements in traffic management efficiency because of the novel possibilities of using VACS both as sensors and as actuators, as well as of a variety of new communications channels (vehicle-to-vehicles, vehicle-to-infrastructure) and related opportunities. To achieve this traffic flow efficiency, appropriate studies, developing potential control strategies to exploit the VACS availability, are essential. This paper describes a hierarchical model predictive control framework that can be used for the coordinated and integrated control of a motorway system, considering that an amount of vehicles are equipped with specific VACS. The concept employs and exploits the synergistic (integrated) action of a number of old and new control measures, including ramp metering, vehicle speed control, and lane changing control at a macroscopic level. The effectiveness and the computational feasibility of the proposed approach are demonstrated via microscopic simulation for a variety of penetration rates of equipped vehicles.  相似文献   

15.
Driver inattentiveness is one of critical factors contributing to vehicle crashes. The inter-vehicle safety warning information system (ISWS) is a technology to enhance driver attentiveness by providing warning messages about upcoming hazards using connected vehicle environments. A novel feature of the proposed ISWS is its ability to detect hazardous driving events, such as abrupt accelerations and lane changes, which are defined as moving hazards with a higher potential of causing crashes. This study evaluated the effectiveness of the ISWS in reducing vehicle emissions and its potential for traffic congestion mitigation. This study included a field experiment that documented actual vehicle maneuvering patterns for abrupt accelerations and lane changes, which were used for more realistic simulation evaluations, in addition to normal accelerations and lane changes. Probe vehicles equipped with customized on-board units consisting of a global positioning system (GPS) device, accelerometer, and gyro sensor were used to obtain the vehicle maneuvering data. A microscopic simulator, VISSIM, was used to simulate a driver’s responsive behavior when warning messages were delivered. A motor vehicle emission simulator (MOVES) was then used to estimate vehicle emissions. The results show that reduction in vehicle emissions increased when the ISWS’s market penetration rate (MPR) and the congestion level of the traffic conditions increased. The maximum CO and CO2 emission reductions achieved were approximately 6% and 7%, respectively, under LOS D traffic conditions. The outcomes of this study can be valuable for deriving smarter operational strategies for ISWS to account for environmental impacts.  相似文献   

16.
Vehicle trajectories with high spatial and temporal resolution are known as the most ideal source of data for developing innovative microscopic traffic models. Aside from the method applied for collecting the vehicle trajectories, such data are more or less error-infected. The ever-increasing noise amplitude during the process of deriving the data (such as speed and acceleration) required for developing models, might change or even hide the structure of data and lead to useful information being overlooked. This highlights the importance of presenting the efficient methods which are adequate to remove noise and enhance the quality of vehicle trajectory data. Accordingly, in this paper a simple two-step technique based on wavelet analysis has been recommended for filtering errors and reconstructing trajectory data. Primarily, by using wavelet transform a special treatment was employed to identify and modify the outliers. Next, the noise in trajectory data was eliminated by applying the wavelet-based filter. The results of applying the proposed method to the synthetic noise-infected trajectory and the NGSIM dataset reveal how appropriate its performance is compared with other methodologies in terms of quantitative criteria.  相似文献   

17.
Vehicle headway distribution models are widely used in traffic engineering fields, since they reflect the fundamental uncertainty in drivers' car-following maneuvers and meanwhile provide a concise way to describe the stochastic feature of traffic flows. This paper presents a systematic review of vehicle headway distribution studies in the last few decades. Since it is impossible to enumerate the merits and drawbacks of all of existing distribution models, we emphasize four advances of headway distribution modeling in this paper. First, we highlight the chronicle of key assumptions on the existing distribution models and explain why this evolution occurs. Second, we show that departure headways measured for interrupted flows on urban streets and headways measured for uninterrupted flows on freeways have common features and can be simulated by a unified microscopic car-following model. The interesting finding helps gather two kinds of headway distribution models under one umbrella. Third, we review different approaches that aim to link microscopic car-following models and mesoscopic vehicle headway distribution models. Fourth, we show that both the point scattering on the density-flow plot and the shape of traffic flow breakdown curve implicitly depend on the vehicular headway distribution. These findings reveal pervasive connections between macroscopic traffic flow models and mesoscopic headway distribution. All these new insights bring new vigor into vehicle headway studies and open research frontiers in this field.  相似文献   

18.
The concept of rescheduling is essential to activity-based modeling in order to calculate effects of both unexpected incidents and adaptation of individuals to traffic demand management measures. When collaboration between individuals is involved or timetable based public transportation modes are chosen, rescheduling becomes complex. This paper describes a new framework to investigate algorithms for rescheduling at a large scale. The framework allows to explicitly model the information flow between traffic information services and travelers. It combines macroscopic traffic assignment with microscopic simulation of agents adapting their schedules. Perception filtering is introduced to allow for traveler specific interpretation of perceived macroscopic data and for information going unnoticed; perception filters feed person specific short term predictions about the environment required for schedule adaptation. Individuals are assumed to maximize schedule utility. Initial agendas are created by the FEATHERS activity-based schedule generator for mutually independent individuals using an undisturbed loaded transportation network. The new framework allows both actor behavior and external phenomena to influence the transportation network state; individuals interpret the state changes via perception filtering and start adapting their schedules, again affecting the network via updated traffic demand. The first rescheduling mechanism that has been investigated uses marginal utility that monotonically decreases with activity duration and a monotonically converging relaxation algorithm to efficiently determine the new activity timing. The current framework implementation is aimed to support re-timing, re-location and activity re-sequencing; re-routing at the level of the individual however, requires microscopic travel simulation.  相似文献   

19.
In this paper, we present results regarding the experimental validation of connected automated vehicle design. In order for a connected automated vehicle to integrate well with human-dominated traffic, we propose a class of connected cruise control algorithms with feedback structure originated from human driving behavior. We test the connected cruise controllers using real vehicles under several driving scenarios while utilizing beyond-line-of-sight motion information obtained from neighboring human-driven vehicles via vehicle-to-everything (V2X) communication. We experimentally show that the design is robust against variations in human behavior as well as changes in the topology of the communication network. We demonstrate that both safety and energy efficiency can be significantly improved for the connected automated vehicle as well as for the neighboring human-driven vehicles and that the connected automated vehicle may bring additional societal benefits by mitigating traffic waves.  相似文献   

20.
Traffic flow propagation stability is concerned about whether a traffic flow perturbation will propagate and form a traffic shockwave. In this paper, we discuss a general approach to the macroscopic traffic flow propagation stability for adaptive cruise controlled (ACC) vehicles. We present a macroscopic model with velocity saturation for traffic flow in which each individual vehicle is controlled by an adaptive cruise control spacing policy. A nonlinear traffic flow stability criterion is investigated using a wavefront expansion technique. Quantitative relationships between traffic flow stability and model parameters (such as traffic flow and speed, etc.) are derived for a generalized ACC traffic flow model. The newly derived stability results are in agreement with previously derived results that were obtained using both microscopic and macroscopic models with a constant time headway (CTH) policy. Moreover, the stability results derived in this paper provide sufficient and necessary conditions for ACC traffic flow stability and can be used to design other ACC spacing policies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号