首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vehicle longitudinal control systems such as (commercially available) autonomous Adaptive Cruise Control (ACC) and its more sophisticated variant Cooperative ACC (CACC) could potentially have significant impacts on traffic flow. Accurate models of the dynamic responses of both of these systems are needed to produce realistic predictions of their effects on highway capacity and traffic flow dynamics. This paper describes the development of models of both ACC and CACC control systems that are based on real experimental data. To this end, four production vehicles were equipped with a commercial ACC system and a newly developed CACC controller. The Intelligent Driver Model (IDM) that has been widely used for ACC car-following modeling was also implemented on the production vehicles. These controllers were tested in different traffic situations in order to measure the actual responses of the vehicles. Test results indicate that: (1) the IDM controller when implemented in our experimental test vehicles does not perceptibly follow the speed changes of the preceding vehicle; (2) strings of consecutive ACC vehicles are unstable, amplifying the speed variations of preceding vehicles; and (3) strings of consecutive CACC vehicles overcome these limitations, providing smooth and stable car following responses. Simple but accurate models of the ACC and CACC vehicle following dynamics were derived from the actual measured responses of the vehicles and applied to simulations of some simple multi-vehicle car following scenarios.  相似文献   

2.
Reduced visibility conditions increase both the probability of rear-end crash occurrences and their severity. Crash warning systems that employ data from connected vehicles have potential to improve vehicle safety by assisting drivers to be aware of the imminent situations ahead in advance and then taking timely crash avoidance action(s). This study provides a driving simulator study to evaluate the effectiveness of the Head-up Display warning system and the audio warning system on drivers’ crash avoidance performance when the leading vehicle makes an emergency stop under fog conditions. Drivers’ throttle release time, brake transition time, perception response time, brake reaction time, minimum modified time-to-collision, and maximum brake pedal pressure are assessed for the analysis. According to the results, the crash warning system can help decrease drivers’ reaction time and reduce the probability of rear-end crashes. In addition, the effects of fog level and drivers’ characteristics including gender and age are also investigated in this study. The findings of this study are helpful to car manufacturers in designing rear-end crash warning systems that enhance the effectiveness of the system’s application under fog conditions.  相似文献   

3.
4.
Advanced Automatic Crash Notification (AACN) systems, capable of predicting post-crash injury severity and subsequent automatic transfer of injury assessment data to emergency medical services, may significantly improve the timeliness, appropriateness, and efficacy of care provided. The estimation of injury severity based on statistical field data, as incorporated in current AACN systems, lack specificity and accuracy to identify the risk of life-threatening conditions. To enhance the existing AACN framework, the goal of the current study was to develop a computational methodology to predict risk of injury in specific body regions based on specific characteristics of the crash, occupant and vehicle. The computational technique involved multibody models of the vehicle and the occupant to simulate the case-specific occupant dynamics and subsequently predict the injury risk using established physical metrics. To demonstrate the computational-based injury prediction methodology, three frontal crash cases involving adult drivers in passenger cars were extracted from the US National Automotive Sampling System Crashworthiness Data System. The representative vehicle model, anthropometrically scaled model of the occupant and kinematic information related to the crash cases, selected at different severities, were used for the blinded verification of injury risk estimations in five different body regions. When compared to existing statistical algorithms, the current computational methodology is a significant improvement toward post-crash injury prediction specifically tailored to individual attributes of the crash. Variations in the initial posture of the driver, analyzed as a pre-crash variable, were shown to have a significant effect on the injury risk.  相似文献   

5.
In this paper, we present results regarding the experimental validation of connected automated vehicle design. In order for a connected automated vehicle to integrate well with human-dominated traffic, we propose a class of connected cruise control algorithms with feedback structure originated from human driving behavior. We test the connected cruise controllers using real vehicles under several driving scenarios while utilizing beyond-line-of-sight motion information obtained from neighboring human-driven vehicles via vehicle-to-everything (V2X) communication. We experimentally show that the design is robust against variations in human behavior as well as changes in the topology of the communication network. We demonstrate that both safety and energy efficiency can be significantly improved for the connected automated vehicle as well as for the neighboring human-driven vehicles and that the connected automated vehicle may bring additional societal benefits by mitigating traffic waves.  相似文献   

6.
To reduce injuries in road crashes, better understanding is needed between the relationship of injury severity and risk factors. This study seeks to identify the contributing factors affecting crash severity with broad considerations of driver characteristics, roadway features, vehicle types, pedestrian characteristics and crash characteristics using an ordered probit model. It also explores how the interaction of these factors will affect accident severity risk. Three types of accidents were investigated: two-vehicle crashes, single vehicle crashes and pedestrian accidents. The reported crash data in Singapore from 1992 to 2001 were used to illustrate the process of parameter estimation. Several factors such as vehicle type, road type, collision type, location type, pedestrian age, time of day of accident occurrence were found to be significantly associated with injury severity. It was also found that injury severity decreases over time for the three types of accident investigated.  相似文献   

7.
Connected vehicle environment provides the groundwork of future road transportation. Researches in this area are gaining a lot of attention to improve not only traffic mobility and safety, but also vehicles’ fuel consumption and emissions. Energy optimization methods that combine traffic information are proposed, but actual testing in the field proves to be rather challenging largely due to safety and technical issues. In light of this, a Hardware-in-the-Loop-System (HiLS) testbed to evaluate the performance of connected vehicle applications is proposed. A laboratory powertrain research platform, which consists of a real engine, an engine-loading device (hydrostatic dynamometer) and a virtual powertrain model to represent a vehicle, is connected remotely to a microscopic traffic simulator (VISSIM). Vehicle dynamics and road conditions of a target vehicle in the VISSIM simulation are transmitted to the powertrain research platform through the internet, where the power demand can then be calculated. The engine then operates through an engine optimization procedure to minimize fuel consumption, while the dynamometer tracks the desired engine load based on the target vehicle information. Test results show fast data transfer at every 200 ms and good tracking of the optimized engine operating points and the desired vehicle speed. Actual fuel and emissions measurements, which otherwise could not be calculated precisely by fuel and emission maps in simulations, are achieved by the testbed. In addition, VISSIM simulation can be implemented remotely while connected to the powertrain research platform through the internet, allowing easy access to the laboratory setup.  相似文献   

8.
Rapid motor vehicle crash detection and characterization is possible through the use of Intelligent Transportation Systems (ITS) and sensors are an integral part of any ITS system. The major focus of this paper is on developing optimal placement of accident detecting omnidirectional sensors to maximize incident detection capabilities and provide ample opportunities for data fusion and crash characterization. Both omnidirectional sensors (placed in suitable infrastructure locations) and mobile sensors are part of our analysis. The surrogates used are acoustic sensors (omnidirectional) and Advanced Automated Crash Notification (AACN) sensors (mobile). This data fusion rich placement is achieved through a hybrid optimization model comprising of an explicit–implicit coverage model followed by an evaluation and local search optimization using simulation. The compound explicit–implicit model delivers good initial solutions and improves the detection and data fusion capabilities compared to the explicit model alone. The results of the studies conducted quantify the use of a data fusion capable environment in crash detection scenarios, and the simulation tool developed helps a decision maker evaluate sensor placement strategy.  相似文献   

9.
The current study contributes to the existing injury severity modeling literature by developing a multivariate probit model of injury severity and seat belt use decisions of both drivers involved in two-vehicle crashes. The modeling approach enables the joint modeling of the injury severity of multiple individuals involved in a crash, while also recognizing the endogeneity of seat belt use in predicting injury severity levels as well as accommodating unobserved heterogeneity in the effects of variables. The proposed model is applied to analyze the injury severity of drivers involved in two-vehicle road crashes in Denmark.The empirical analysis provides strong support for the notion that people offset the restraint benefits of seat belt use by driving more aggressively. Also, men and those individuals driving heavy vehicles have a lower injury risk than women and those driving lighter vehicles, respectively. At the same time, men and individuals driving heavy vehicles pose more of a danger to other drivers on the roadway when involved in a crash. Other important determinants of injury severity include speed limit on roadways where crash occurs, the presence (or absence) of center dividers (median barriers), and whether the crash involves a head-on collision. These and other results are discussed, along with implications for countermeasures to reduce injury severities in crashes. The analysis also underscores the importance of considering injury severity at a crash level, while accommodating seat belt endogeneity effects and unobserved heterogeneity effects.  相似文献   

10.
Cooperative Adaptive Cruise Control (CACC) systems have the potential to increase roadway capacity and mitigate traffic congestion thanks to the short following distance enabled by inter-vehicle communication. However, due to limitations in acceleration and deceleration capabilities of CACC systems, deactivation and switch to ACC or human-driven mode will take place when conditions are outside the operational design domain. Given the lack of elaborate models on this interaction, existing CACC traffic flow models have not yet been able to reproduce realistic CACC vehicle behaviour and pay little attention to the influence of system deactivation on traffic flow at bottlenecks. This study aims to gain insights into the influence of CACC on highway operations at merging bottlenecks by using a realistic CACC model that captures driver-system interactions and string length limits. We conduct systematic traffic simulations for various CACC market penetration rates (MPR) to derive free-flow capacity and queue discharge rate of the merging section and compare these to the capacity of a homogeneous pipeline section. The results show that an increased CACC MPR can indeed increase the roadway capacity. However, the resulting capacity in the merging bottleneck is much lower than the pipeline capacity and capacity drop persists in bottleneck scenarios at all CACC MPR levels. It is also found that CACC increases flow heterogeneity due to the switch among different operation modes. A microscopic investigation of the CACC operational mode and trajectories reveals a close relation between CACC deactivation, traffic congestion and flow heterogeneity.  相似文献   

11.
This paper examines the impact of personal and environmental characteristics on severity of injuries sustained in pedestrian–vehicle crashes using a generalized ordered probit model. The data covers 2000–2004 of pedestrian–vehicle crashes taken from police incident reports for Baltimore City and supplemented with local land use, urban form and transportation information specific to the individual crash locations. The results on personal and behavioral variables confirm previous findings. Women pedestrians involved in crashes tend to be injured less frequently than their male counterparts; children have an increased likelihood of sustaining injuries and older persons are more likely to be fatally injured. Pedestrians who cross against the traffic signal, are not in a crosswalk and are involved in a crash after dark are associated with greater injury risk. Of the built environment policy variables of interest, transit access and greater pedestrian connectivity, such as central city areas, are significant and negatively associated with injury severity. These results suggest that the environmental conditions should be given more scrutiny and be an important consideration when evaluating and planning for pedestrian safety.  相似文献   

12.
Traffic flow optimization and driver comfort enhancement are the main contributions of an Adaptive Cruise Control (ACC) system. If communication links are added, more safety and shorter gaps can be reached performing a Cooperative-ACC (CACC). Although shortening the inter-vehicular distances directly improves traffic flow, it can cause string unstable behavior. This paper presents fractional-order-based control algorithms to enhance the car-following and string stability performance for both ACC and CACC vehicle strings, including communication temporal delay effects. The proposed controller is compared with state-of-the-art implementations, exhibiting better performance. Simulation and real experiments have been conducted for validating the approach.  相似文献   

13.
为了对比研究A类防撞等级中F型混凝土护栏和直壁型混凝土护栏的防护性能,建立两种护栏与客车的有限元模型,运用ANSYS Workbench软件中显式动力学模块,控制仿真碰撞的试验参数,将大客车模型以规定的初速度和碰撞角度进行计算机仿真碰撞试验,从车辆的加速度、车辆运行轨迹、护栏的最大动态变形量等方面综合对比两种护栏的防护性能。结果表明:相比直壁式护栏,F型混凝土护栏防撞性能、安全性能、导向性能较好。  相似文献   

14.
Due to the difficulty of obtaining accurate real-time visibility and vehicle based traffic data at the same time, there are only few research studies that addressed the impact of reduced visibility on traffic crash risk. This research was conducted based on a new visibility detection system by mounting visibility sensor arrays combined with adaptive learning modules to provide more accurate visibility detections. The vehicle-based detector, Wavetronix SmartSensor HD, was installed at the same place to collect traffic data. Reduced visibility due to fog were selected and analyzed by comparing them with clear cases to identify the differences based on several surrogate measures of safety under different visibility classes. Moreover, vehicles were divided into different types and the vehicles in different lanes were compared in order to identify whether the impact of reduced visibility due to fog on traffic crash risk varies depending on vehicle types and lanes. Log-Inverse Gaussian regression modeling was then applied to explore the relationship between time to collision and visibility together with other traffic parameters. Based on the accurate visibility and traffic data collected by the new visibility and traffic detection system, it was concluded that reduced visibility would significantly increase the traffic crash risk especially rear-end crashes and the impact on crash risk was different for different vehicle types and for different lanes. The results would be helpful to understand the change in traffic crash risk and crash contributing factors under fog conditions. We suggest implementing the algorithms in real-time and augmenting it with ITS measures such as VSL and DMS to reduce crash risk.  相似文献   

15.
This paper investigates the nature, and impact of the reporting bias associated with the police-reported crash data on inferences made using this data. In doing so, we merge a detailed emergency room data and police-reported crash data for a specific region in Denmark. To disentangle potentially common observable and unobservable factors that affect drivers’ injury severity risk and their crash reporting behavior, we formulate a bivariate ordered-response probit model of injury severity risk and crash reporting propensity. To empirically identify the reporting bias in this joint model, we exploit an exogenous police reform that particularly affects some specific municipalities of the region under consideration. The empirical analysis reveals substantial reporting bias in the commonly used police-reported road crash data. This non-random sample selection associated with the police-reported crash data leads to biased estimates on the effect of some of the explanatory variables in injury severity analysis. For instance, estimates based on the police-reported crash data substantially underestimate the effectiveness of seat belt use in reducing drivers’ injury severity risk.  相似文献   

16.
To assess safety impacts of untried traffic control strategies, an earlier study developed a vehicle dynamics model‐integrated (i.e., VISSIM‐CarSim‐SSAM) simulation approach and evaluated its performance using surrogate safety measures. Although the study found that the integrated simulation approach was a superior alternative to existing approaches in assessing surrogate safety, the computation time required for the implementation of the integrated simulation approach prevents it from using it in practice. Thus, this study developed and evaluated two types of models that could replace the integrated simulation approach with much faster computation time, feasible for real‐time implementation. The two models are as follows: (i) a statistical model (i.e., logit model) and (ii) a nonparametric approach (i.e., artificial neural network). The logit model and the neural network model were developed and trained on the basis of three simulation data sets obtained from the VISSIM‐CarSim‐SSAM integrated simulation approach, and their performances were compared in terms of the prediction accuracy. These two models were evaluated using six new simulation data sets. The results indicated that the neural network approach showing 97.7% prediction accuracy was superior to the logit model with 85.9% prediction accuracy. In addition, the correlation analysis results between the traffic conflicts obtained from the neural network approach and the actual traffic crash data collected in the field indicated a statistically significant relationship (i.e., 0.68 correlation coefficient) between them. This correlation strength is higher than that of the VISSIM only (i.e., the state of practice) simulation approach. The study results indicated that the neural network approach is not only a time‐efficient way to implementing the VISSIM‐CarSim‐SSAM integrated simulation but also a superior alternative in assessing surrogate safety. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Active Traffic Management (ATM) systems have been emerging in recent years in the US and Europe. They provide control strategies to improve traffic flow and reduce congestion on freeways. This study investigates the feasibility of utilizing a Variable Speed Limits (VSL) system, one key part of ATM, to improve traffic safety on freeways. A proactive traffic safety improvement VSL control algorithm is proposed. First, an extension of the METANET (METANET: A macroscopic simulation program for motorway networks) traffic flow model is employed to analyze VSL’s impact on traffic flow. Then, a real-time crash risk evaluation model is estimated for the purpose of quantifying crash risk. Finally, optimal VSL control strategies are achieved by employing an optimization technique to minimize the total crash risk along the VSL implementation corridor. Constraints are setup to limit the increase of average travel time and the differences of the posted speed limits temporarily and spatially. This novel VSL control algorithm can proactively reduce crash risk and therefore improve traffic safety. The proposed VSL control algorithm is implemented and tested for a mountainous freeway bottleneck area through the micro-simulation software VISSIM. Safety impacts of the VSL system are quantified as crash risk improvements and speed homogeneity improvements. Moreover, three different driver compliance levels are modeled in VISSIM to monitor the sensitivity of VSL effects on driver compliance. Conclusions demonstrated that the proposed VSL system could improve traffic safety by decreasing crash risk and enhancing speed homogeneity under both the high and moderate compliance levels; while the VSL system fails to significantly enhance traffic safety under the low compliance scenario. Finally, future implementation suggestions of the VSL control strategies and related research topics are also discussed.  相似文献   

18.
In today’s world of volatile fuel prices and climate concerns, there is little study on the relationship between vehicle ownership patterns and attitudes toward vehicle cost (including fuel prices and feebates) and vehicle technologies. This work provides new data on ownership decisions and owner preferences under various scenarios, coupled with calibrated models to microsimulate Austin’s personal-fleet evolution.Opinion survey results suggest that most Austinites (63%, population-corrected share) support a feebate policy to favor more fuel efficient vehicles. Top purchase criteria are price, type/class, and fuel economy. Most (56%) respondents also indicated that they would consider purchasing a Plug-in Hybrid Electric Vehicle (PHEV) if it were to cost $6000 more than its conventional, gasoline-powered counterpart. And many respond strongly to signals on the external (health and climate) costs of a vehicle’s emissions, more strongly than they respond to information on fuel cost savings.Twenty five-year simulations of Austin’s household vehicle fleet suggest that, under all scenarios modeled, Austin’s vehicle usage levels (measured in total vehicle miles traveled or VMT) are predicted to increase overall, along with average vehicle ownership levels (both per household and per capita). Under a feebate, HEVs, PHEVs and Smart Cars are estimated to represent 25% of the fleet’s VMT by simulation year 25; this scenario is predicted to raise total regional VMT slightly (just 2.32%, by simulation year 25), relative to the trend scenario, while reducing CO2 emissions only slightly (by 5.62%, relative to trend). Doubling the trend-case gas price to $5/gallon is simulated to reduce the year-25 vehicle use levels by 24% and CO2 emissions by 30% (relative to trend).Two- and three-vehicle households are simulated to be the highest adopters of HEVs and PHEVs across all scenarios. The combined share of vans, pickup trucks, sport utility vehicles (SUVs), and cross-over utility vehicles (CUVs) is lowest under the feebate scenario, at 35% (versus 47% in Austin’s current household fleet). Feebate-policy receipts are forecasted to exceed rebates in each simulation year.In the longer term, gas price dynamics, tax incentives, feebates and purchase prices along with new technologies, government-industry partnerships, and more accurate information on range and recharging times (which increase customer confidence in EV technologies) should have added effects on energy dependence and greenhouse gas emissions.  相似文献   

19.
This paper examines the impact of having cooperative adaptive cruise control (CACC) embedded vehicles on traffic flow characteristics of a multilane highway system. The study identifies how CACC vehicles affect the dynamics of traffic flow on a complex network and reduce traffic congestion resulting from the acceleration/deceleration of the operating vehicles. An agent-based microscopic traffic simulation model (Flexible Agent-based Simulator of Traffic) is designed specifically to examine the impact of these intelligent vehicles on traffic flow. The flow rate of cars, the travel time spent, and other metrics indicating the evolution of traffic congestion throughout the lifecycle of the model are analyzed. Different CACC penetration levels are studied. The results indicate a better traffic flow performance and higher capacity in the case of CACC penetration compared to the scenario without CACC-embedded vehicles.  相似文献   

20.
This paper presents a transit simulation model designed to support evaluation of operations, planning and control, especially in the context of Advanced Public Transportation Systems (APTS). Examples of potential applications include frequency determination, evaluation of real-time control strategies for schedule maintenance and assessing the effects of vehicle scheduling on the level of service. Unlike most previous efforts in this area, the simulation model is built on a platform of a mesoscopic traffic simulation model, which allows modeling of the operation dynamics of large-scale transit systems taking into account the stochasticity due to interactions with road traffic. The capabilities of Mezzo as an evaluation tool of transit operations are demonstrated with an application to a real-world high-demand bus line in the Tel-Aviv metropolitan area under various scenarios. The headway distributions at two stops are compared with field observations and show good consistency between simulated and observed data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号