首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 710 毫秒
1.
文章以西安北站至咸阳机场城际轨道项目为例,通过ANSYS有限元软件模拟分析了新建隧道近距离平行施工对已建隧道产生的影响,考虑了"先左孔、后右孔"和"先右孔、后左孔"两种施工工序,重点分析盾构施工中地层损失率、盾构顶推力和注浆情况的影响规律。结果表明,"先左孔、后右孔"对地层位移和已建隧道管片的应力、应变影响较小;地层损失率越小,地表沉降量越小,产生的地表最大沉降量越小,地表沉降坡度越缓;盾构顶推力越大,地表的沉降量越大,随着盾构掘进深度的增大,地表沉降量逐渐减小,直至趋于稳定;注浆材料的弹性模量越大,地表沉降量越小。  相似文献   

2.
文章针对盾构隧道邻近深基坑推进的工况,进行室内缩尺模型试验,并建立了对应工况下的盾构隧道-土体-基坑围护结构三部分共同作用的三维有限元计算模型。通过对比同一工况下的室内模型试验和数值计算结果,验证了三维数值分析的可行性和可靠性;得到了邻近既有深基坑的盾构法隧道施工引起周边地表沉降的分布特点及其变化规律;分析了盾构隧道开挖引起的横断面不同深度处地层位移的特点;分析了隧道上方的地表沉降分布受邻近既有基坑的影响及沉降值随盾构隧道推进进度的变化规律,得到了盾构隧道对基坑围护结构的位移影响情况;并提出了盾构隧道施工过程中对周边地表沉降、地层变位及基坑围护结构位移与变形进行实时监测的建议。  相似文献   

3.
盾构法施工中不可避免地会对周围地层产生扰动影响,故加强盾构施工变形控制显得尤为重要。文章以某城市地铁盾构隧道工程为研究背景,采用理论分析和数值模拟方法,研究了双孔平行隧道施工地表沉降分布规律及影响因素,提出了改进的双线隧道地表沉降预测方法,并与现场实测数据进行了对比分析。研究结果表明:隧道间距越大,形成"W"形沉降曲线特征越明显;隧道埋深越小,沉降曲线由"V"形向"W"形转变所需的隧道间距L越小;土质条件越好,地层扰动影响范围越小,"W"形沉降槽特征也越显著;采用C=L/2i来描述双线平行隧道地表沉降分布特征是可行的,随C值增大地表沉降曲线分布由"V"形—"锅底"形—"W"形发展,"W"形非对称性分布特征与隧道相对间距有关;由本文提出的双线盾构施工引起的地表沉降计算公式计算出的地表沉降预测值与实测沉降曲线吻合较好,可用于双线隧道施工地表沉降变形预测,对盾构隧道研究具有重要理论指导和实践意义。  相似文献   

4.
覃健世 《西部交通科技》2024,(1):190-192+204
为了降低砂卵石地层盾构施工对邻近建筑物的影响程度,文章基于Midas GTS NX有限元软件构建模型,对不同顶推力、注浆压力和浆液强度下盾构邻近建筑物变形规律进行分析。结果表明:建筑物的沉降变形和水平位移随着顶推力增大而逐渐增大,随着注浆压力和浆液强度增大而逐渐减小;顶推力越小,注浆压力和浆液强度越大,建筑倾斜率越小;当盾构千斤顶推力为110 kPa、注浆压力为190 kPa时,建筑的沉降变形相对较小,并宜选择强度高的注浆材料。  相似文献   

5.
文章以北京地铁某盾构区间隧道为研究对象,通过分析地表沉降监测数据,提出了以改进双曲线模型拟合地面沉降规律、用特征值M_S评价盾构施工条件下地层情况的方法,并研究了地层参数与地表沉降之间的关系。结果表明:盾构隧道施工引起的地表沉降规律符合双曲线分布特征,且在30 d时基本稳定;M_S值越大,地层条件越好,地面沉降越小;改进双曲模型参量与地层特征值M_S存在一定规律性。该研究成果对盾构施工中的地表沉降变形预测具有一定的参考价值。  相似文献   

6.
地铁盾构隧道,尤其是大型跨江海的水下地铁盾构隧道,局部埋深通常要大于普通地铁盾构隧道,而且要承受较高的水压力作用;盾构隧道作为特长线性结构,其纵向刚度较小,对于外部荷载的变化较为敏感,由此产生的不均匀变形是隧道工程中不可忽视的问题。文章针对武汉地铁越长江盾构隧道工程,通过三维数值计算探讨了埋深变化、水压变化、地层变化及穿越刚性结构物等因素对越江盾构隧道纵向不均匀变形及受力状态的影响。  相似文献   

7.
杭州地铁盾构隧道掘进对建筑物影响的实测分析   总被引:2,自引:0,他引:2  
文章基于杭州地铁1号线某区间盾构隧道下穿建筑物工程实例,对双线盾构隧道施工过程中引起的建筑物和地表沉降进行了现场监测,并结合盾构掘进系统的数据,对建筑物和地表的实测沉降数据进行了分析,研究了双线盾构隧道掘进施工引起不同位置、不同结构建筑物的沉降规律。结果表明:盾构施工过程中通过控制注浆量和排土量,能有效地控制建筑物的沉降;建筑物基础底面积越大,监测点的沉降曲线越复杂,越需要严格控制施工进程;建筑物离隧道轴线的水平距离越近,监测点的沉降规律和轴线上方地表的沉降规律也越接近。  相似文献   

8.
为探析盾构隧道穿越桥梁桩基群中桩基托换过程的受力转换机理及盾构隧道掘进对群桩基础结构的影响,文章以深圳地铁10号线盾构隧道穿越广深高速桥梁桩基群为工程背景,采用FLAC~(3D)开展桩基托换与地铁隧道施工的数值模拟。研究结果表明:桩基托换后,桥梁荷载体系从桥面板→桩基→地基土转换为桥面板→既有桩基+托换桩→地基土,被托换桩的上覆荷载能够有效地转移到新建托换桩上;在桩基托换与盾构掘进过程中所产生的沉降变形能够提高桩端阻力与桩侧摩阻力,使得桩基结构的最大主应力有所降低;桥梁桩基沉降量以盾构隧道推进过程中由地层损失和掘进扰动产生的沉降变形为主,桩基托换所产生的沉降量占总沉降量的20%~30%;桩基沉降变形、侧向位移与主应力降低效应均主要表现在托换桩上,非托换桩变化不大;盾构隧道管片衬砌结构变形主要产生在桩基托换区域附近,且以沉降变形为主,水平位移较小。  相似文献   

9.
城市轨道交通盾构隧道下穿或侧穿建筑物时,为避免地层沉降差异超限导致周边建筑物破坏,需对盾构隧道顶线上方软土层进行注浆加固,但在市区施工协调难度大,传统地层加固手段难以实施。文章以广州地铁14号线邓村—江浦区间盾构隧道侧穿姓钟围房屋群注浆加固项目为背景,采用水平定向钻孔注浆技术对姓钟围部分建筑物下伏软土砂层进行远距离加固。通过采用随钻测斜与定向技术顺利完成沿盾构隧道走向的水平注浆孔钻进,通过注浆阀管并结合止浆塞可实现定位重复注浆。实践证明该新工艺对盾构隧道侧穿建筑物时地表不均匀沉降控制具有良好的效果。  相似文献   

10.
目前建设于软土地区的盾构隧道在长期服役过程中出现了较大的沉降及差异沉降,影响了管片的结构性能及运营安全。为研究软土地层中盾构隧道长期沉降规律,文章以佛山市轨道交通3号线为工程背景,通过离心模型试验研究盾构隧道在不同厚度的软土地层中长期沉降的发展规律以及隧道周边地基土加固对长期沉降的影响。结果表明:隧道下卧土层性质越差且厚度越大,隧道的长期沉降量越大,长期沉降发展时间越长;同时,隧道埋深较大也会使长期沉降量增大;隧道长期沉降和地表变形都会随地基土加固深度的增加而减小,但减小幅度会逐渐降低,加固深度为3 m,6 m和穿透软弱层时,隧道最终沉降量分别减少了16.7%,30.2%和41.3%,隧道正上方地表变形分别减小了25.4%,44.9%和66.3%。  相似文献   

11.
文章针对郑州地铁盾构法隧道近距离叠交穿越电力隧道的施工工况,应用ABAQUS软件对地铁隧道穿越电力隧道施工进行数值模拟,研究分析了郑州砂性地层盾构施工引起的地表以及电力隧道的沉降规律。计算结果表明,地表沉降最大值位于两隧道中心,约12 mm;电力隧道最大沉降值位于盾构隧道与电力隧道交点处,最大值约15 mm,在规范要求沉降范围内。基于研究成果,采取针对性施工措施后,地表沉降与电力隧道的沉降得到了有效控制,确保了电力隧道的安全。  相似文献   

12.
针对青岛地铁隧道穿越富水砂层施工过程中存在的涌砂、涌水等不稳定性问题所采取的深孔注浆加固措施,文章结合地铁3号线某区间富水砂层隧道工程实例,通过FLAC3D数值计算与现场实测手段进行了富水砂层地区地铁隧道施工中深孔注浆加固扰动机理研究。研究结果表明:(1)注浆深度和注浆压力对地层扰动变形影响显著,应综合考虑、合理选取,青岛富水砂层地区宜采用1.4~1.5 MPa的注浆压力;(2)地表持续隆起时,双线隧道上方的地表地层呈现M状隆起,隧道中线部位注浆压力对地层扰动影响明显,隆起最大位于拱顶部位;(3)地表在注浆初期迅速隆起,掌子面开挖至监测断面前-3D范围内时地表开始快速沉降,-2D范围内沉降放缓,开挖通过监测断面后至1D范围内地表较快沉降,然后逐渐趋于稳定;(4)注浆施工对建筑物的影响程度要小于单纯的地表抬升,上方建筑物随地层的M状变形出现正曲率变形,损害建筑物结构时,建筑物墙体一般会形成倒八字裂缝;(5)隧道内拱顶沉降和净空收敛均在下穿监测断面时变形较快,当开挖至距监测断面2D范围后,变形趋势逐渐减小,至3D范围后逐渐趋于稳定。  相似文献   

13.
昆明地铁首次在含有泥炭质土软弱地层中采用盾构法施工,难度极大。文章依托昆明地铁首期工程实践,考虑含有泥炭质土软弱地层条件下先行隧道施工对后行隧道施工的影响,建立修正的Peck公式对地表沉降进行计算,在此基础上采用数值方法进一步分析该软弱地层条件下地铁盾构掘进引起地层沉降变形规律,并与地层沉降预测经验公式对比。研究表明:本文方法与数值模拟结果以及现场监测数据吻合较好,可以较好地分析含泥炭质土软弱地层中盾构掘进引起的地层变形规律;先施工隧道的外侧地表沉降变化率较大,后施工的隧道外侧地表沉降变化率较小,但横向沉降范围较大;最大沉降量位于两隧道轴线的中线和先施工隧道的轴线之间,主要由先施工的隧道引起。最后,结合盾构施工监测数据,提出了含泥炭质土软弱地层条件下地铁盾构施工地层变形控制技术措施。  相似文献   

14.
在盾构隧道施工中,地层参数的变化对地表沉降影响较大。文章依托上海北横通道工程,利用三维数值分析方法,总结了粘聚力、内摩擦角和压缩模量等地层参数变化对地表沉降的影响规律,并基于参数敏感性分析理论,得到了各地层参数对地表沉降的敏感度。研究结果表明:对于不同埋深的盾构隧道,粘聚力、内摩擦角以及压缩模量的增加都会明显减小地表沉降;地层参数中,粘聚力对地表沉降的敏感性最低,地层的压缩模量对地表沉降的敏感性最高。  相似文献   

15.
依托于北京轨交8号线某区间盾构隧道工程,基于Peck理论和预测建筑物沉降的刚度修正法,通过对现场变形监测数据的分析,研究北京旧城地区盾构施工引起的地表和古旧平房群沉降规律,并提出了适用于盾构施工下穿古旧平房群的沉降预测方法。  相似文献   

16.
文章以南京市纬三路过江通道大直径双线盾构(φ14.5 m)工程为背景,结合现场监测数据,对超大直径泥水式盾构在砂、砂卵石地层中掘进引起的地表变形过程和分布规律进行分析。研究结果表明:盾构隧道地表纵向变形分为四个不同阶段,分别为隆起、快速沉降、缓慢沉降和最后稳定阶段;单线隧道施工地表变形可用Peck公式描述,拟合得到Vl值平均为1.856%,K值平均为0.423,整体呈现单峰状;双线隧道施工地表变形呈不对称双峰状,这是因为后建隧道的施工增加了地表最大沉降值以及沉降槽宽度,进而改变了沉降槽的形状;双线隧道施工地表变形可用双Peck公式进行描述,K值与隧道数量、施工历史情况无明显关联,Vl值与施工方法、质量控制及双线隧道施工顺序有关。研究结果可为类似工程提供指导及参考。  相似文献   

17.
文章依托深圳地铁11号线宝—碧区间盾构隧道工程,基于现场实测地表沉降数据和数值模拟分析,探究砂-粘土复合地层盾构隧道施工引起的地表沉降规律。采用高斯峰值函数对隧道横断面沉降数据进行拟合,得到沉降槽宽度系数、最大沉降量和地层损失率等表征横断面沉降特征的重要参数。与软土地层和砂卵石地层沉降槽宽度系数比较,砂-粘土复合地层沉降槽宽度系数小于软土地层且大于砂卵石地层。采用数值模拟计算结合实测数据的方法,研究了在砂-粘土复合地层中隧道埋深、上覆地层条件和隧道洞身处地层条件对地表沉降的影响。研究结果表明,地表沉降受上覆地层条件影响显著,与接近地表地层性质密切相关。  相似文献   

18.
大直径泥水盾构近距离穿越运营地铁隧道的施工控制技术   总被引:1,自引:0,他引:1  
结合上海大直径泥水平衡盾构首次在承压水砂性地层中近距离穿越运营地铁隧道的工程实例,介绍了近距离穿越过程中被穿越隧道的沉降变化规律,分析了各施工参数对隧道变形的影响,总结了工程中出现的问题及应对措施,供同类工程参考。  相似文献   

19.
为了研究大直径盾构施工过程中非对称同步注浆对土体扰动的影响规律,基于钱江隧道南岸始发段超大直径泥水平衡盾构施工,通过有限元方法重点模拟了盾尾同步注浆过程,并与现场监测数据进行对比分析。在既有解析解的基础上通过二次开发实现有限元模型同步注浆压力的非均匀分布模式,使其充分反映非对称注浆工况。模拟中考虑了非对称注浆压力比、注浆率和注浆缺陷分布模式(即局部注浆压力不足位置)等因素对周边地层扰动的影响。研究表明,不对称注浆压力导致沉降槽呈不规则状,注浆压力较大的一侧易发生地表隆起;不对称注浆压力比与地层损失率呈线性负相关;随着注浆率增加,深层土体沉降值不断增加,当深度增加时,这种趋势会更加明显;不同注浆缺陷分布模式对地表沉降有不同程度的影响,顶部注浆孔压力对地表沉降量的影响较大,而腰部注浆孔压力对地表沉降槽宽度系数影响较大,底部注浆孔压力对地表沉降的影响相对较小。  相似文献   

20.
文章推导了一种埋地管线安全程度判定方法的计算公式,分析了适用于超大直径盾构隧道穿越管线过程中的安全判定方法,并建立了管线应力状态与管线位置处的地表变形之间的联系。通过实测地表沉降数据,拟合管线挠曲线方程,再通过对挠曲线求微分得出管线曲率,进而求得管线的应力状态。并通过管线的实际应力状态与容许应力相比较,建立管线安全度评价指标。该安全度指标可以用于指导盾构隧道穿越管线施工中的参数控制。以上海某超大直径越江盾构隧道950~1 040环穿越高危管线的实测数据为依据,计算了盾构穿越管线过程中的管线安全度。研究表明,盾构穿越管线会造成隧道上方管线安全度的降低,受影响管线安全系数一般在5~15左右,但通过对盾构施工参数的控制,可以确保高危管线安全。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号