首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 811 毫秒
1.
This paper assess whether a real-world second-by-second methodology that integrates vehicle activity and emissions rates for light-duty gasoline vehicles can be extended to diesel vehicles. Secondly it compares fuel use and emission rates between gasoline and diesel light-duty vehicles. To evaluate the methodology, real-world field data from two light-duty diesel vehicles are used. Vehicle specific power, a function of vehicle speed, acceleration, and road grade, is evaluated with respect to ability to explain variation in emissions rates. Vehicle specific power has been used previously to define activity-based modes and to quantify variation in fuel use and emission rates of gasoline vehicles taking into account idle, acceleration, cruise, and deceleration. The fuel use and emission rates for light-duty diesel vehicles can also be explained using vehicle specific power -based modes. Thus, the methodology enables direct comparisons for different vehicle fuels and technologies. Furthermore, the method can be used to estimate average fuel use and emission rates for a wide variety of driving cycles.  相似文献   

2.
Microscopic emission models are widely used in emission estimation and environment evaluation. Traditionally, microscopic traffic simulation models and probe vehicles are two sources of inputs to a microscopic emission model. However, they are not effective in reflecting all vehicles' real‐world operating conditions. Using each vehicle's spot speed data recorded by detectors, this paper provides a new method to estimate all vehicles' real‐world activities data. These data can then be used as inputs to a microscopic emission model to estimate vehicle fuel consumption and emissions. The main task is to reconstruct trajectory of each vehicle and calculate second‐by‐second speed and acceleration from the activities data. The Next Generation Simulation dataset and the Comprehensive Modal Emissions Model are used in this study to calculate and analyze the emission results for both lane‐level and link‐level. The results showed that using the proposed method for estimating vehicle fuel consumption and emissions is promising. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This study focuses on the development of a microscopic traffic simulation and emission modeling system which aims at quantifying the effects of different types of traffic calming measures on vehicle emissions both at a link-level and at a network-level. It also investigates the effects of isolated traffic-calming measures at a corridor level and area-wide calming schemes, using a scenario analysis. Our study is set in Montreal, Canada where a traffic simulation model for a dense urban neighborhood is extended with capabilities for microscopic emission estimation. The results indicate that on average, isolated calming measures increase carbon dioxide (CO2), carbon monoxide (CO), and nitrogen oxides (NOx) emissions by 1.5, 0.3, and 1.5 %, respectively across the entire network. Area-wide schemes result in a percentage increase of 3.8 % for CO2, 1.2 % for CO, and 2.2 % for NOx across the entire network. Along specific corridors where traffic calming measures were simulated, increases in emissions of up to 83 % were observed. We also account for the effect of different measures on traffic volumes and observe moderate decreases in areas that have undergone traffic calming. In spite of traffic flow reductions, total emissions do increase.  相似文献   

4.
This paper develops an integrated model for reliable estimation of daily vehicle fuel savings and emissions using an integrated traffic emission modeling approach created by incorporating the US Environmental Protection Agency’s vehicle emission model, MOVES, and the PARAMICS microscopic traffic simulation package. A case study is conducted to validate the model using a well-calibrated road network in Greenville, South Carolina. For each transportation fuel considered, both emission and fuel consumption impacts are evaluated based on market shares.  相似文献   

5.
Fuel consumption or pollutant emissions can be assessed by coupling a microscopic traffic flow model with an instantaneous emission model. Traffic models are usually calibrated using goodness of fit indicators related to the traffic behavior. Thus, this paper investigates how such a calibration influences the accuracy of fuel consumption and NOx and PM estimations. Two traffic models are investigated: Newell and Gipps. It appears that the Gipps model provides the closest simulated trajectories when compared to real ones. Interestingly, a reverse ranking is observed for fuel consumption, NOx and PM emissions. For both models, the emissions of single vehicles are very sensitive to the calibration. This is confirmed by a global sensitivity analysis of the Gipps model that shows that non-optimal parameters significantly increase the variance of the outputs. Fortunately, this is no longer the case when emissions are calculated for a group of many vehicles. Indeed, the mean errors for platoons are close to 10% for the Gipps model and always lower than 4% for the Newell model. Another interesting property is that optimal parameters for each vehicle can be replaced by the mean values with no discrepancy for the Newell model and low discrepancies for the Gipps model when calculating the different emission outputs. Finally, this study presents preliminary results that show that multi-objective calibration methods are certainly the best direction for future works on the Gipps model. Indeed, the accuracy of vehicle emissions can be highly improved with negligible counterparts on the traffic model accuracy.  相似文献   

6.
This article presents a new approach to microscopic road traffic exhaust emission modelling. The model described uses data from the SCOOT demand-responsive traffic control system implemented in over 170 cities across the world. Estimates of vehicle speed and classification are made using data from inductive detector loops located on every SCOOT link. This data feeds into a microscopic traffic model to enable enhanced modelling of the driving modes of vehicles (acceleration, deceleration, idling and cruising). Estimates of carbon monoxide emissions are made by applying emission factors from an extensive literature review. A critical appraisal of the development and validation of the model is given before the model is applied to a study of the impact of high emitting vehicles. The article concludes with a discussion of the requirements for the future development and benefits of the application of such a model.  相似文献   

7.
The paper evaluates the effectiveness of various traffic calming measures from the perspectives of traffic performance and safety, and environmental and public health impacts. The proposed framework was applied to four calming measures – two types of speed humps, speed tables, and chicanes – to demonstrate its usefulness and applicability. A field experiment using probe vehicles equipped with global positioning system devices was conducted to obtain vehicle trajectory data for use in more realistic simulations. In addition, a recently developed vehicle emissions model was used for more accurate evaluation of environmental and public health impacts. The results show that chicane is better than the other types of traffic calming measures considered, except in terms of vehicle emissions.  相似文献   

8.
This study investigates the impacts of traffic signal timing optimization on vehicular fuel consumption and emissions at an urban corridor. The traffic signal optimization approach proposed integrates a TRANSIMS microscopic traffic simulator, the VT-Micro model (a microscopic emission and fuel consumption estimation model), and a genetic algorithm (GA)-based optimizer. An urban corridor consisting of four signalized intersections in Charlottesville, VA, USA, is used for a case study. The result of the case study is then compared with the best traffic signal timing plan generated by Synchro using the TRANSIMS microscopic traffic simulator. The proposed approach achieves much better performance than that of the best Synchro solution in terms of air quality, energy and mobility measures: 20% less network-wide fuel consumption, 8–20% less vehicle emissions, and nearly 27% less vehicle-hours-traveled (VHT).  相似文献   

9.
In this study, the effects of isolated traffic calming measures and area-wide calming schemes on air quality in a dense neighborhood were estimated using a combination of microscopic traffic simulation, emission, and dispersion modeling. Results indicated that traffic calming measures did not have as large an effect on nitrogen dioxide (NO2) concentrations as the effect observed on nitrogen oxide (NOx) emissions. Changes in emissions resulted in highly disproportional changes in pollutant levels due to daily meteorological conditions, road geometry and orientation with respect to the wind. Average NO2 levels increased between 0.1% and 10% with respect to the base-case while changes in NOx emissions varied between 5% and 160%. Moreover, higher wind speeds decreased NO2 concentrations on both sides of the roadway. Among the traffic calming measures, speed bumps produced the highest increases in NO2 levels.  相似文献   

10.
Reducing greenhouse gas (GHG) emissions from transportation in the context of the climate change issue and the associated Kyoto Agreement of 1997 is a challenge. Since urban transportation is a major contributor to greenhouse gases, measures are required to reduce these emissions. Given that during peak periods, road vehicles propelled by petroleum fuel‐based internal combustion engines produce a high level of GHG emissions due to stop and go operations, measures to improve traffic flow can play an effective mitigation role. This paper describes a simulation‐based methodology and a case study for the quantification of GHG emission reduction owing to advanced traffic control systems.  相似文献   

11.
The critical component of all emission models is a driving cycle representing the traffic behaviour. Although Indian driving cycles were developed to test the compliance of Indian vehicles to the relevant emission standards, they neglects higher speed and acceleration and assume all vehicle activities to be similar irrespective of heterogeneity in the traffic mix. Therefore, this study is an attempt to develop an urban driving cycle for estimating vehicular emissions and fuel consumption. The proposed methodology develops the driving cycle using micro-trips extracted from real-world data. The uniqueness of this methodology is that the driving cycle is constructed considering five important parameters of the time–space profile namely, the percentage acceleration, deceleration, idle, cruise, and the average speed. Therefore, this approach is expected to be a better representation of heterogeneous traffic behaviour. The driving cycle for the city of Pune in India is constructed using the proposed methodology and is compared with existing driving cycles.  相似文献   

12.
Current research on traffic control has focused on the optimization of either traffic signals or vehicle trajectories. With the rapid development of connected and automated vehicle (CAV) technologies, vehicles equipped with dedicated short-range communications (DSRC) can communicate not only with other CAVs but also with infrastructure. Joint control of vehicle trajectories and traffic signals becomes feasible and may achieve greater benefits regarding system efficiency and environmental sustainability. Traffic control framework is expected to be extended from one dimension (either spatial or temporal) to two dimensions (spatiotemporal). This paper investigates a joint control framework for isolated intersections. The control framework is modeled as a two-stage optimization problem with signal optimization at the first stage and vehicle trajectory control at the second stage. The signal optimization is modeled as a dynamic programming (DP) problem with the objective to minimize vehicle delay. Optimal control theory is applied to the vehicle trajectory control problem with the objective to minimize fuel consumption and emissions. A simplified objective function is adopted to get analytical solutions to the optimal control problem so that the two-stage model is solved efficiently. Simulation results show that the proposed joint control framework is able to reduce both vehicle delay and emissions under a variety of demand levels compared to fixed-time and adaptive signal control when vehicle trajectories are not optimized. The reduced vehicle delay and CO2 emissions can be as much as 24.0% and 13.8%, respectively for a simple two-phase intersection. Sensitivity analysis suggests that maximum acceleration and deceleration rates have a significant impact on the performance regarding both vehicle delay and emission reduction. Further extension to a full eight-phase intersection shows a similar pattern of delay and emission reduction by the joint control framework.  相似文献   

13.
This paper relies on vehicle trajectory collection on a corridor, to compare different traffic representations used for the estimation of the sound power of light vehicles and the resulting sound pressure levels. Four noise emission models are tested. The error introduced when the emissions are calculated based on speeds measured at regular intervals along the road network are quantified and explained. The current noise emission models might in particular misestimate noise levels under congestion. This bias can be reduced by introducing additional traffic variables in the modeling. In addition, significant differences within the models are highlighted, especially concerning their accounting of vehicle accelerations. Models that rely on a binary representation of acceleration regimes (a vehicle or a road segment is accelerating or not) can lead to errors in practice. Models under use in Europe have a very low sensitivity to acceleration values. These results help underlying the further required improvements of dynamic road traffic noise models.  相似文献   

14.
Mobile sensing enabled by GPS or smart phones has become an increasingly important source of traffic data. For sufficient coverage of the traffic stream, it is important to maintain a reasonable penetration rate of probe vehicles. From the standpoint of capturing higher-order traffic quantities such as acceleration/deceleration, emission and fuel consumption rates, it is desirable to examine the impact on the estimation accuracy of sampling frequency on vehicle position. Of the two issues raised above, the latter is rarely studied in the literature. This paper addresses the impact of both sampling frequency and penetration rate on mobile sensing of highway traffic. To capture inhomogeneous driving conditions and deviation of traffic from the equilibrium state, we employ the second-order phase transition model (PTM). Several data fusion schemes that incorporate vehicle trajectory data into the PTM are proposed. And, a case study of the NGSIM dataset is presented which shows the estimation results of various Eulerian and Lagrangian traffic quantities. The findings show that while first-order traffic quantities can be accurately estimated even with a low sampling frequency, higher-order traffic quantities, such as acceleration, deviation, and emission rate, tend to be misinterpreted due to insufficiently sampled vehicle locations. We also show that a correction factor approach has the potential to reduce the sensing error arising from low sampling frequency and penetration rate, making the estimation of higher-order quantities more robust against insufficient data coverage of the highway traffic.  相似文献   

15.
国内对于燃油添加剂效果的分析研究较少,文章为了探讨某型燃油添加剂对在用车排放和性能的影响,依据GB18285-2005《点燃式发动机汽车排气污染物排放限值及测量方法》,针对不同行驶里程的汽车,选用双怠速法检测汽车使用某型号燃油添加剂前后的排放变化,并对油耗和动力性进行简单测评。结果表明,使用燃油添加剂和选择合适标号燃油能有效降低汽车污染物排放及油耗,对车辆使用节能减排具有较为重要意义。  相似文献   

16.
Traffic signals, even though crucial for safe operations of busy intersections, are one of the leading causes of travel delays in urban settings, as well as the reason why billions of gallons of fuel are burned, and tons of toxic pollutants released to the atmosphere each year by idling engines. Recent advances in cellular networks and dedicated short-range communications make Vehicle-to-Infrastructure (V2I) communications a reality, as individual cars and traffic signals can now be equipped with communication and computing devices. In this paper, we first presented an integrated simulator with V2I, a car-following model and an emission model to simulate the behavior of vehicles at signalized intersections and calculate travel delays in queues, vehicle emissions, and fuel consumption. We then present a hierarchical green driving strategy based on feedback control to smooth stop-and-go traffic in signalized networks, where signals can disseminate traffic signal information and loop detector data to connected vehicles through V2I communications. In this strategy, the control variable is an individual advisory speed limit for each equipped vehicle, which is calculated from its location, signal settings, and traffic conditions. Finally, we quantify the mobility and environment improvements of the green driving strategy with respect to market penetration rates of equipped vehicles, traffic conditions, communication characteristics, location accuracy, and the car-following model itself, both in isolated and non-isolated intersections. In particular, we demonstrate savings of around 15% in travel delays and around 8% in fuel consumption and greenhouse gas emissions. Different from many existing ecodriving strategies in signalized road networks, where vehicles’ speed profiles are totally controlled, our strategy is hierarchical, since only the speed limit is provided, and vehicles still have to follow their leaders. Such a strategy is crucial for maintaining safety with mixed vehicles.  相似文献   

17.
Coupling a traffic microsimulation with an emission model is a means of assessing fuel consumptions and pollutant emissions at the urban scale. Dealing with congested states requires the efficient capture of traffic dynamics and their conditioning for the emission model. Two emission models are investigated here: COPERT IV and PHEM v11. Emission calculations were performed at road segments over 6 min periods for an area of Paris covering 3 km2. The resulting network fuel consumption (FC) and nitrogen oxide (NOx) emissions are then compared. This article investigates: (i) the sensitivity of COPERT to the mean speed definition, and (ii) how COPERT emission functions can be adapted to cope with vehicle dynamics related to congestion. In addition, emissions are evaluated using detailed traffic output (vehicle trajectories) paired with the instantaneous emission model, PHEM.COPERT emissions are very sensitive to mean speed definition. Using a degraded speed definition leads to an underestimation ranging from −13% to −25% for fuel consumption during congested periods (from −17% to −36% respectively for NOx emissions). Including speed distribution with COPERT leads to higher emissions, especially under congested conditions (+13% for FC and +16% for NOx). Finally, both these implementations are compared to the instantaneous modeling chain results. Performance indicators are introduced to quantify the sensitivity of the coupling to traffic dynamics. Using speed distributions, performance indicators are more or less doubled compared to traditional implementation, but remain lower than when relying on trajectories paired with the PHEM emission model.  相似文献   

18.
通过安装车载测试系统收集香港港岛山区路段正常行驶工况下尾气中的CO、NOx、HC等污染物和油耗并辅助计算机软件进行分析。研究得出,山区道路设计、地形地貌和驾驶习惯对车辆油耗以及CO、NOx和HC排放有直接关系。可以通过坡道加宽、坡道延长、减少坡道红绿灯等措施减少车辆在山区道路行驶过程中速度变化频率,从而减少油耗以及CO、NOx和HC排放。  相似文献   

19.
The vehicle population of Beijing is sharply increasing at an average annual rate of 14.5%, causing severe transportation and environmental problems. The Beijing municipal government and the public have worked hard to control vehicular emissions since 1995. Strategies and measures have been introduced to regulate land use and traffic planning, emission control of in-use vehicles and new vehicles, fuel quality improvement, introduction of clean fuel vehicle technology and fiscal incentives. New development plans for Beijing will change the transportation structure by encouraging public transportation. For in-use vehicles, the I/M program has employed ASM tests since early 2003 and the government has encouraged the retirement of high-emission vehicles. For new vehicles, Beijing introduced Euro 1 and Euro 2 emission standards in early 1999 and 2003, respectively. It is also confirmed that Euro 3 standards will be introduced in 2005. At the same time, the fuel quality in Beijing was improved significantly, by banning lead and reducing sulfur among other changes. CNG and LPG were introduced in 1999 and are used in buses and taxis. Today Beijing has the largest CNG bus fleet in the world with more than 2000 dedicated CNG buses. Beijing has also focused on fiscal incentives such as tax deductions for new vehicles meeting enhanced emission standards to encourage their sales. These strategies and measures have had an impact on the control of vehicular emissions. Despite the rapid increase of the vehicle population by 60% between 1998 and 2003, total vehicular emissions have not increased. With the enhancement of vehicular emission control, the air quality in Beijing is improving as the city strives to its goal for a “Green Olympics”.  相似文献   

20.
Driving cycles are used to assess vehicle fuel consumption and pollutant emissions. The premise in this article is that suburban road-work vehicles and airport vehicles operate under particular conditions that are not taken into account by conventional driving cycles. Thus, experimental data were acquired from two pickup trucks representing both vehicle fleets that were equipped with a data logger. Based on experimental data, the suburban road-work vehicle showed a mixed driving behavior of high and low speed with occasional long periods of idling. In the airport environment, however, the driving conditions were restricted to airport grounds but were characterized by many accelerations and few high speeds. Based on these measurements, microtrips were defined and two driving cycles proposed. Fuel consumption and pollutant emissions were then measured for both cycles and compared to the FTP-75 and HWFCT cycles, which revealed a major difference: at least a 31% increase in fuel consumption over FTP-75. This increased fuel consumption translates into higher pollutant emissions. When CO2 equivalent emissions are taken into account, the proposed cycles show an increase of at least 31% over FTP-75 and illustrate the importance of quantifying fleet speed patterns to assess CO2 equivalent emissions so that the fleet manager can determine potential gains in energy or increased pollutant emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号