首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conventional methods for estimating origin-destination (O-D) trip matrices from link traffic counts assume that route choice proportions are given constants. In a network with realistic congestion levels, this assumption does not hold. This paper shows how existing methods such as the generalized least squares technique can be integrated with an equilibrium traffic assignment in the form of a convex bilevel optimization problem. The presence of measurement errors and time variations in the observed link flows are explicitly considered. The feasibility of the model is always guaranteed without a requirement for estimating consistent link flows from counts. A solution algorithm is provided and numerical simulation experiments are implemented in investigating the model's properties. Some related problems concerning O-D matrix estimation are also discussed.  相似文献   

2.
The paper adopts the framework employed by the existing dynamic assignment models, which analyse specific network forms, and develops a methodology for analysing general networks. Traffic conditions within a link are assumed to be homogeneous, and the time varying O-D travel times and traffic flow patterns are calculated using elementary relationships from traffic flow theory and link volume conservation equations. Each individual is assumed to select a departure time and a route by trading off the travel time and schedule delay associated with each alternative. A route is considered as reasonable if it includes only links which do not take the traveller back to the origin. The set of reasonable routes is not consistant but depends on the time that an individual decides to depart from his origin. Equilibrium distributions are derived from a Markovian model which describes the evolution of travel patterns from day to day. Numerical simulation experiments are conducted to analyse the impact of different work start time flexibilities on the time dependent travel patterns. The similarity between link flows and travel times obtained from static and dynamic stochastic assignment is investigated. It is shown that in congested networks the application of static assignment results in travel times which are lower than the ones predicted by dynamic assignment.  相似文献   

3.
There is significant current interest in the development of models to describe the day-to-day evolution of traffic flows over a network. We consider the problem of statistical inference for such models based on daily observations of traffic counts on a subset of network links. Like other inference problems for network-based models, the critical difficulty lies in the underdetermined nature of the linear system of equations that relates link flows to the latent path flows. In particular, Bayesian inference implemented using Markov chain Monte Carlo methods requires that we sample from the set of route flows consistent with the observed link flows, but enumeration of this set is usually computationally infeasible.We show how two existing conditional route flow samplers can be adapted and extended for use with day-to-day dynamic traffic. The first sampler employs an iterative route-by-route acceptance–rejection algorithm for path flows, while the second employs a simple Markov model for traveller behaviour to generate candidate entire route flow patterns when the network has a tree structure. We illustrate the application of these methods for estimation of parameters that describe traveller behaviour based on daily link count data alone.  相似文献   

4.
Static traffic assignment models are still widely applied for strategic transport planning purposes in spite of the fact that such models produce implausible traffic flows that exceed link capacities and predict incorrect congestion locations. There have been numerous attempts to constrain link flows to capacity. Capacity constrained models with residual queues are often referred to as quasi-dynamic traffic assignment models. After reviewing the literature, we come to the conclusion that an important piece of the puzzle has been missing so far, namely the inclusion of a first order node model. In this paper we propose a novel path-based static traffic assignment model for finding a stochastic user equilibrium in general transportation networks. This model includes a first order (steady-state) node model that yields more realistic turn capacities, which are then used to determine consistent capacity constrained traffic flows, residual point (vertical) queues (upstream bottleneck links), and path travel times consistent with queuing theory. The route choice part of the model is specified as a variational inequality problem, while the network loading part is formulated as a fixed point problem. Both problems are solved using existing techniques to find a solution. We illustrate the model using hypothetical examples, and also demonstrate feasibility on large-scale networks.  相似文献   

5.
A dynamic traffic assignment (DTA) model typically consists of a traffic performance model and a route choice model. The traffic performance model describes how traffic propagates (over time) along routes connecting origin-destination (OD) pairs, examples being the cell transmission model, the vertical queueing model and the travel time model. This is implemented in a dynamic network loading (DNL) algorithm, which uses the given route inflows to compute the link inflows (and hence link costs), which are then used to compute the route travel times (and hence route costs). A route swap process specifies the route inflows for tomorrow (at the next iteration) based on the route inflows today (at the current iteration). A dynamic user equilibrium (DUE), where each traveller on the network cannot reduce his or her cost of travel by switching to another route, can be sought by iterating between the DNL algorithm and the route swap process. The route swap process itself takes up very little computational time (although route set generation can be very computationally intensive for large networks). However, the choice of route swap process dramatically affects convergence and the speed of convergence. The paper details several route swap processes and considers whether they lead to a convergent system, assuming that the route cost vector is a monotone function of the route inflow vector.  相似文献   

6.
The work deals with the assignment of traffic to a two-dimensional continuous representation of a traffic network. An important aspect of the treatment is that the reciprocal of the speed on each road in the network is at all times a linear function of the flow on that road. This speed-flow relationship is generalized to two-dimensional space using travel intensities and taking account of road densities, so that there is direct dependence of speeds upon flows at all points regardless of their location. There is also dependence of flows upon speeds at all points because Wardrop's first assignment principle is adopted. That is, for a given O-D pair, journey times on all routes actually used are identical, and less than journey times on all other possible routes. This results in the identification for each O-D pair of an “assignment zone”, an area within which all trips between that O-D pair are made, and beyond which no such trips are made. For a single O-D pair the assignment zone is identified by ?m, the maximum angular divergence of a path from the straight line between O and D. Paths are then assumed to be bilinear so that for a single O-D pair the assignment zone is a parallelogram. Journey times, speeds, lateral displacement and other related quantities are obtained as functions of the flow Q between O and D. The work is extended to three O-D pairs located at the extremities of an equilateral triangle and four O-D pairs located at the corners of a square. At low flows these two configurations are trivial extensions of the single O-D pair problem because assignment zones do not overlap. At higher flows account is taken of this tendency to overlapping, so that although they do not overlap they do touch, becoming kite-shaped. Origins and destinations are assumed to be at the periphery of small circles of arbitrary radius. The work is inelegant to the extent that it involves a numerical integration but it is possible that this might eventually be circumvented.  相似文献   

7.
We propose a new mathematical formulation for the problem of optimal traffic assignment in dynamic networks with multiple origins and destinations. This problem is motivated by route guidance issues that arise in an Intelligent Vehicle-Highway Systems (IVHS) environment. We assume that the network is subject to known time-varying demands for travel between its origins and destinations during a given time horizon. The objective is to assign the vehicles to links over time so as to minimize the total travel time experienced by all the vehicles using the network. We model the traffic network over the time horizon as a discrete-time dynamical system. The system state at each time instant is defined in a way that, without loss of optimality, avoids complete microscopic detail by grouping vehicles into platoons irrespective of origin node and time of entry to network. Moreover, the formulation contains no explicit path enumeration. The state transition function can model link travel times by either impedance functions, link outflow functions, or by a combination of both. Two versions (with different boundary conditions) of the problem of optimal traffic assignment are studied in the context of this model. These optimization problems are optimal control problems for nonlinear discrete-time dynamical systems, and thus they are amenable to algorithmic solutions based on dynamic programming. The computational challenges associated with the exact solution of these problems are discussed and some heuristics are proposed.  相似文献   

8.
This paper presents a dynamic network‐based approach for short‐term air traffic flow prediction in en route airspace. A dynamic network characterizing both the topological structure of airspace and the dynamics of air traffic flow is developed, based on which the continuity equation in fluid mechanics is adopted to describe the continuous behaviour of the en route traffic. Building on the network‐based continuity equation, the space division concept in cell transmission model is introduced to discretize the proposed model both in space and time. The model parameters are sequentially updated based on the statistical properties of the recent radar data and the new predicting results. The proposed method is applied to a real data set from Shanghai Area Control Center for the short‐term air traffic flow prediction both at flight path and en route sector level. The analysis of the case study shows that the developed method can characterize well the dynamics of the en route traffic flow, thereby providing satisfactory prediction results with appropriate uncertainty limits. The mean relative prediction errors are less than 0.10 and 0.14, and the absolute errors fall in the range of 0 to 1 and 0 to 3 in more than 95% time intervals respectively, for the flight path and en route sector level. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Moving bottlenecks in highway traffic are defined as a situation in which a slow-moving vehicle, be it a truck hauling heavy equipment or an oversized vehicle, or a long convey, disrupts the continuous flow of the general traffic. The effect of moving bottlenecks on traffic flow is an important factor in the evaluation of network performance. This effect, though, cannot be assessed properly by existing transportation tools, especially when the bottleneck travels relatively long distances in the network.This paper develops a dynamic traffic assignment (DTA) model that can evaluate the effects of moving bottlenecks on network performance in terms of both travel times and traveling paths. The model assumes that the characteristics of the moving bottleneck, such as traveling path, physical dimensions, and desired speed, are predefined and, therefore, suitable for planned conveys.The DTA model is based on a mesoscopic simulation network-loading procedure with unique features that allow assessing the special dynamic characteristics of a moving bottleneck. By permitting traffic density and speed to vary along a link, the simulation can capture the queue caused by the moving bottleneck while preserving the causality principles of traffic dynamics.  相似文献   

10.
A network optimization problem is formulated which yields a probabilistic equilibrated traffic assignment incorporating congestion effects and which as a special case, reduces to a user optimized equilibrium solution. In the resulting model, path choice is determined by a logit formula in which path costs are functions of the assigned flows. The article also demonstrates the similarity between some fixed demand incremental methods of traffic assignment and the minimization problem associated with computing the user equilibrium assignment.  相似文献   

11.
Several route choice models are reviewed in the context of the stochastic user equilibrium problem. The traffic assignment problem has been extensively studied in the literature. Several models were developed focusing mainly on the solution of the link flow pattern for congested urban areas. The behavioural assumption governing route choice, which is the essential part of any traffic assignment model, received relatively much less attention. The core of any traffic assignment method is the route choice model. In the wellknown deterministic case, a simple choice model is assumed in which drivers choose their best route. The assumption of perfect knowledge of travel costs has been long considered inadequate to explain travel behaviour. Consequently, probabilistic route choice models were developed in which drivers were assumed to minimize their perceived costs given a set of routes. The objective of the paper is to review the different route choice models used to solve the traffic assignment problem. Focus is on the different model structures. The paper connects some of the route choice models proposed long ago, such as the logit and probit models, with recently developed models. It discusses several extensions to the simple logit model, as well as the choice set generation problem and the incorporation of the models in the assignment problem.  相似文献   

12.
In this paper, a dynamic user equilibrium traffic assignment model with simultaneous departure time/route choices and elastic demands is formulated as an arc-based nonlinear complementarity problem on congested traffic networks. The four objectives of this paper are (1) to develop an arc-based formulation which obviates the use of path-specific variables, (2) to establish existence of a dynamic user equilibrium solution to the model using Brouwer's fixed-point theorem, (3) to show that the vectors of total arc inflows and associated minimum unit travel costs are unique by imposing strict monotonicity conditions on the arc travel cost and demand functions along with a smoothness condition on the equilibria, and (4) to develop a heuristic algorithm that requires neither a path enumeration nor a storage of path-specific flow and cost information. Computational results are presented for a simple test network with 4 arcs, 3 nodes, and 2 origin–destination pairs over the time interval of 120 periods.  相似文献   

13.
This paper addresses a general stochastic user equilibrium (SUE) traffic assignment problem with link capacity constraints. It first proposes a novel linearly constrained minimization model in terms of path flows and then shows that any of its local minimums satisfies the generalized SUE conditions. As the objective function of the proposed model involves path‐specific delay functions without explicit mathematical expressions, its Lagrangian dual formulation is analyzed. On the basis of the Lagrangian dual model, a convergent Lagrangian dual method with a predetermined step size sequence is developed. This solution method merely invokes a subroutine at each iteration to perform a conventional SUE traffic assignment excluding link capacity constraints. Finally, two numerical examples are used to illustrate the proposed model and solution method.  相似文献   

14.
This paper proposes a generalized model to estimate the peak hour origin–destination (OD) traffic demand variation from day-to-day hourly traffic counts throughout the whole year. Different from the conventional OD estimation methods, the proposed modeling approach aims to estimate not only the mean but also the variation (in terms of covariance matrix) of the OD demands during the same peak hour periods due to day-to-day fluctuation over the whole year. For this purpose, this paper fully considers the first- and second-order statistical properties of the day-to-day hourly traffic count data so as to capture the stochastic characteristics of the OD demands. The proposed model is formulated as a bi-level optimization problem. In the upper-level problem, a weighted least squares method is used to estimate the mean and covariance matrix of the OD demands. In the lower-level problem, a reliability-based traffic assignment model is adopted to take account of travelers’ risk-taking path choice behaviors under OD demand variation. A heuristic iterative estimation-assignment algorithm is proposed for solving the bi-level optimization problem. Numerical examples are presented to illustrate the applications of the proposed model for assessment of network performance over the whole year.  相似文献   

15.
Transportation networks are often subjected to perturbed conditions leading to traffic disequilibrium. Under such conditions, the traffic evolution is typically modeled as a dynamical system that captures the aggregated effect of paths-shifts by drivers over time. This paper proposes a day-to-day (DTD) dynamical model that bridges two important gaps in the literature. First, existing DTD models generally consider current path flows and costs, but do not factor the sensitivity of path costs to flow. The proposed DTD model simultaneously captures all three factors in modeling the flow shift by drivers. As a driver can potentially perceive the sensitivity of path costs with the congestion level based on past experience, incorporating this factor can enhance real-world consistency. In addition, it smoothens the time trajectory of path flows, a desirable property for practice where the iterative solution procedure is typically terminated at an arbitrary point due to computational time constraints. Second, the study provides a criterion to classify paths for an origin–destination pair into two subsets under traffic disequilibrium: expensive paths and attractive paths. This facilitates flow shifts from the set of expensive paths to the set of attractive paths, enabling a higher degree of freedom in modeling flow shift compared to that of shifting flows only to the shortest path, which is behaviorally restrictive. In addition, consistent with the real-world driver behavior, it also helps to preclude flow shifts among expensive paths. Improved behavioral consistency can lead to more meaningful path/link time-dependent flow profiles for developing effective dynamic traffic management strategies for practice. The proposed DTD model is formulated as the dynamical system by drawing insights from micro-economic theory. The stability of the model and existence of its stationary point are theoretically proven. Results from computational experiments validate its modeling properties and illustrate its benefits relative to existing DTD dynamical models.  相似文献   

16.
Many problems in transport planning and management tasks require an origindestination (O-D) matrix to represent the travel pattern. However, O-D matrices obtained through a large scale survey such as home or roadside interviews, tend to be costly, labour intensive and time disruptive to trip makers. Therefore, the use of low cost and easily available data is particularly attractive.The need of low-cost methods to estimate current and future O-D matrices is even more valuable in developing countries because of the rapid changes in population, economic activity and land use. Models of transport demand have been used for many years to synthesize O-D matrices in study areas. A typical example of this is the gravity model; its functional form, plus the appropriate values for the parameters involved, is employed to produce acceptable matrices representing trip making behaviour for many trip purposes and time periods.The work reported in this paper has combined the advantages of acceptable travel demand models with the low cost and availability of traffic counts. Three types of demand models have been used: gravity (GR), opportunity (OP) and gravity-opportunity (GO) models. Three estimation methods have been developed to calibrate these models from traffic counts, namely: non-linear-least-squares (NLLS), weighted-non-linear-least-squares (WNLLS) and maximumlikelihood (ML).The 1978 Ripon (urban vehicle movement) survey was used to test these methods. They were found to perform satisfactorily since each calibrated model reproduced the observed O-D matrix fairly closely. The tests were carried out using two assignment techniques, all-or-nothing and the stochastic method due to Burrell, in determining the routes taken through the network.requests for offprints  相似文献   

17.
This paper investigates the transportation network reliability based on the information provided by detectors installed on some links. A traffic flow simulator (TFS) model is formulated for assessing the network reliability (in terms of travel time reliability), in which the variation of perceived travel time error and the fluctuations of origin-destination (OD) demand are explicitly considered. On the basis of prior OD demand and partial updated detector data, the TFS can estimate the link flows for the whole network together with link/path travel times, and their variance and covariance. The travel time reliability by OD pair can also be assessed and the OD matrix can be updated simultaneously. A Monte Carlo based algorithm is developed to solve the TFS model. The application of the proposed TFS model is illustrated by a numerical example.  相似文献   

18.
Traffic flows in real-life transportation systems vary on a daily basis. According to traffic flow theory, such variability should induce a similar variability in travel times, but this “internal consistency” is generally not captured by existing network equilibrium models. We present an internally-consistent network equilibrium approach, which considers two potential sources of flow variability: (i) daily variation in route choice and (ii) daily variation in origin–destination demand. We particularly aspire to a flexible formulation that permits alternative statistical assumptions, which allows the best fit to be made to observed variability data in particular applications. Joint probability distributions of route—and therefore link—flows are derived under several assumptions concerning stochastic driver behavior. A stochastic network equilibrium model with stochastic demands and route choices is formulated as a fixed point problem. We explore limiting cases which allow an equivalent convex optimization problem to be defined, and finally apply this method to a real-life network of Kanazawa City, Japan.  相似文献   

19.
For a large number of applications conventional methods for estimating an origin destination matrix become too expensive to use. Two models, based on information minimisation and entropy maximisation principles, have been developed by the authors to estimate an O-D matrix from traffic counts. The models assume knowledge of the paths followed by the vehicles over the network. The models then use the traffic counts to estimate the most likely O-D matrix consistent with the link volumes available and any prior information about the trip matrix. Both models can be used to update and improve a previous O-D matrix. An algorithm to find a solution to the model is then described. The models have been tested with artificial data and performed reasonably well. Further research is being carried out to validate the models with real data.  相似文献   

20.
In order to improve cooperation between traffic management and travelers, traffic assignment is the key component to achieve the objectives of both traffic management and route choice decisions for travelers. Traffic assignment can be classified into two models based on the behavioral assumptions governing route choices: User Equilibrium (UE) and System Optimum (SO) traffic assignment. According to UE and SO traffic assignment, travelers usually compete to choose the least cost routes to minimize their own travel costs, while SO traffic assignment requires travelers to work cooperatively to minimize overall cost in the road network. Thus, the paradox of benefits between UE and SO indicates that both are not practical. Thus, a solution technique needs to be proposed to balance UE and SO models, which can compromise both sides and give more feasible traffic assignments. In this paper, Stackelberg game theory is introduced to the traffic assignment problem, which can achieve the trade-off process between traffic management and travelers. Since traditional traffic assignments have low convergence rates, the gradient projection algorithm is proposed to improve efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号