首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 436 毫秒
1.
People’s daily decision to use car-sharing rather than other transport modes for conducting a specific activity has been investigated recently in assessing the market potential of car-sharing systems. Most studies have estimated transport mode choice models with an extended choice set using attributes such as average travel time and costs. However, car-sharing systems have some distinctive features: users have to reserve a car in advance and pay time-based costs for using the car. Therefore, the effects of activity-travel context and travel time uncertainty require further consideration in models that predict car-sharing demand. Moreover, the relationships between individual latent attitudes and the intention to use car-sharing have not yet been investigated in much detail. In contributing to the research on car-sharing, the present study is designed to examine the effects of activity-travel context and individual latent attitudes on short-term car-sharing decisions under travel time uncertainty. The effects of all these factors were simultaneously estimated using a hybrid choice modeling framework. The data used in this study was collected in the Netherlands, 2015 using a stated choice experiment. Hypothetical choice situations were designed to collect respondents’ intention to use a shared-car for their travel to work. A total of 791 respondents completed the experiment. The estimation results suggest that time constraints, lack of spontaneity and a larger variation in travel times have significant negative effects on people’s intention to use a shared-car. Furthermore, this intention is significantly associated with latent attitudes about pro-environmental preferences, the symbolic value of cars, and privacy-seeking.  相似文献   

2.
There are a number of disruptive mobility services that are increasingly finding their way into the marketplace. Two key examples of such services are car-sharing services and ride-sourcing services. In an effort to better understand the influence of various exogenous socio-economic and demographic variables on the frequency of use of ride-sourcing and car-sharing services, this paper presents a bivariate ordered probit model estimated on a survey data set derived from the 2014–2015 Puget Sound Regional Travel Study. Model estimation results show that users of these services tend to be young, well-educated, higher-income, working individuals residing in higher-density areas. There are significant interaction effects reflecting the influence of children and the built environment on disruptive mobility service usage. The model developed in this paper provides key insights into factors affecting market penetration of these services, and can be integrated in larger travel forecasting model systems to better predict the adoption and use of mobility-on-demand services.  相似文献   

3.

R&D in the field of driver support systems is increasingly paid attention to. These systems can contribute significantly to public traffic goals. However, there is much uncertainty about future technology developments, market introduction, and impacts on driver and traffic behaviour. An international Delphi study collecting expert opinions on these issues is partly described here. The Delphi study was organized in three rounds. Opinions of 50 experts from the USA, Japan and Europe were collected. The paper is limited to market introduction, and technological and driver-behavioural barriers. The main conclusion is that future developments are less obvious than often assumed.  相似文献   

4.
This research proposed an eco-driving system for an isolated signalized intersection under partially Connected and Automated Vehicles (CAV) environment. This system prioritizes mobility before improving fuel efficiency and optimizes the entire traffic flow by optimizing speed profiles of the connected and automated vehicles. The optimal control problem was solved using Pontryagin’s Minimum Principle. Simulation-based before and after evaluation of the proposed design was conducted. Fuel consumption benefits range from 2.02% to 58.01%. The CO2 emissions benefits range from 1.97% to 33.26%. Throughput benefits are up to 10.80%. The variations are caused by the market penetration rate of connected and automated vehicles and v/c ratio. No adverse effect is observed. Detailed investigation reveals that benefits are significant as long as there is CAV and they grow with CAV’s market penetration rate (MPR) until they level off at about 40% MPR. This indicates that the proposed eco-driving system can be implemented with a low market penetration rate of connected and automated vehicles and could be implemented in a near future. The investigation also reveals that the proposed eco-driving system is able to smooth out the shock wave caused by signal controls and is robust over the impedance from conventional vehicles and randomness of traffic. The proposed system is fast in computation and has great potential for real-time implementation.  相似文献   

5.
Free-floating car-sharing schemes operate without fixed car-sharing stations, ahead reservations or return-trip requirements. Providing fast and convenient motorization, they attract both public transport users and (former) car-owners. Thus, their impact on individual travel behavior depends on the user type. Estimating the travel behavior impact of these systems therefore requires quantitative data. Using a two-wave survey approach (shortly after launch of the scheme plus one year later) including travel diaries, this research indicates that (due to their membership) 6% of the free-floating car-sharing customers reduce their private vehicle ownership. Moreover, the results suggest that free-floating car-sharing both complements and competes with station-based car-sharing.  相似文献   

6.
The present study is designed to investigate social influence in car-sharing decisions under uncertainty. Social influence indicates that individuals’ decisions are influenced by the choices made by members of their social networks. An individual may experience different degrees of influence depending on social distance, i.e. the strength of the social relationship between individuals. Such heterogeneity in social influence has been largely ignored in the previous travel behavior research. The data used in this study stems from an egocentric social network survey, which measures the strength of the social relationships of each respondent. In addition, a sequential stated adaptation experiment was developed to capture more explicitly the effect of social network choices on the individual decision-making process. Social distance is regarded as a random latent variable. The estimated social distance and social network choices are incorporated into a social influence variable, which is treated as an explanatory variable in the car-sharing decision model. To simultaneously estimate latent social distance and the effects of social influence on the car-sharing decision, we expand the hybrid choice framework to incorporate the latent social distance model into discrete choice analysis. The estimation results show substantial social influence in car-sharing decisions. The magnitude of social influence varies according to the type of relationship, similarity of socio-demographics and the number of social interactions.  相似文献   

7.
Battery electric vehicle adoption research has been on going for two decades. The majority of data gathered thus far is taken from studies that sample members of the general population and not actual adopters of the vehicles. This paper presents findings from a study involving 340 adopters of battery electric vehicles. The data is used to corroborate some existing assumptions made about early adopters. The contribution of this paper, however, is the distinction between two groups of adopters. These are high-end adopters and low-end adopters. It is found that each group has a different socio-economic profile and there are also some psychographic differences. Further they have different opinions of their vehicles with high-end adopters viewing their vehicles more preferentially. The future purchase intentions of each group are explored and it is found that high-end adopters are more likely to continue with ownership of battery electric vehicles in subsequent purchases. Finally reasons for this are explored by comparing each adopter group’s opinions of their vehicles to their future purchase intentions. From this is it suggested that time to refuel and range for low-end battery electric vehicles should be improved in order to increase chances of drivers continuing with BEV ownership.  相似文献   

8.
Under the Connected Vehicle environment where vehicles and road-side infrastructure can communicate wirelessly, the Advanced Driver Assistance Systems (ADAS) can be adopted as an actuator for achieving traffic safety and mobility optimization at highway facilities. In this regard, the traffic management centers need to identify the optimal ADAS algorithm parameter set that leads to the optimization of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. Once the ADAS-equipped drivers implement the optimal parameter set, they become active agents that work cooperatively to prevent traffic conflicts, and suppress the development of traffic oscillations into heavy traffic jams. Measuring systematic effectiveness of this traffic management requires am analytic capability to capture the quantified impact of the ADAS on individual drivers’ behaviors and the aggregated traffic safety and mobility improvement due to such an impact. To this end, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through a multi-objective optimization approach that uses the Genetic Algorithm. The developed methodology is tested at a freeway facility under low, medium and high ADAS market penetration rate scenarios. The case study reveals that fine-tuning the ADAS algorithm parameter can significantly improve the throughput and reduce the traffic delay and conflicts at the study site in the medium and high penetration scenarios. In these scenarios, the ADAS algorithm parameter optimization is necessary. Otherwise the ADAS will intensify the behavior heterogeneity among drivers, resulting in little traffic safety improvement and negative mobility impact. In the high penetration rate scenario, the identified optimal ADAS algorithm parameter set can be used to support different control objectives (e.g., safety improvement has priority vs. mobility improvement has priority).  相似文献   

9.
Consumer 3D printing is on the rise and has the potential to significantly change the transport and logistics sector. Current literature on 3D printing and transport studies does not provide a systematic model of the impact of 3D printing on transport and related (policy relevant) areas, such as traffic safety, location decisions, accessibility and environmental effects. Based on a literature review and two rounds of expert consultation, we propose and refine a conceptual model as a way to approach this gap in the literature. The expert consultation yields that the conceptual model comprises the relevant and important elements for assessing the impact of 3D printing on transport and transport-related challenges. Location, needs and transport resistance are important: (a) city-level hubs are the most likely locations for 3D printers because they can coordinate material flows and gather expertise; (b) mass-individualisation and personification dictates the needs for 3D printers; (c) distribution networks will be organised more efficiently, less empty vehicles, but raw materials still need shipping. However, experts’ opinions diverged on the impact of 3D printing on transport volumes and environmental impacts.  相似文献   

10.
Plug-in Hybrid Electric Vehicles (PHEVs) show potential to reduce greenhouse gas (GHG) emissions, increase fuel efficiency, and offer driving ranges that are not limited by battery capacity. However, these benefits will not be realized if consumers do not adopt this new technology. Several agent-based models have been developed to model potential market penetration of PHEVs, but gaps in the available data limit the usefulness of these models. To address this, we administered a survey to 1000 stated US residents, using Amazon Mechanical Turk, to better understand factors influencing the potential for PHEV market penetration. Our analysis of the survey results reveals quantitative patterns and correlations that extend the existing literature. For example, respondents who felt most strongly about reducing US transportation energy consumption and cutting greenhouse gas emissions had, respectively, 71 and 44 times greater odds of saying they would consider purchasing a compact PHEV than those who felt least strongly about these issues. However, even the most inclined to consider a compact PHEV were not generally willing to pay more than a few thousand US dollars extra for the sticker price. Consistent with prior research, we found that financial and battery-related concerns remain major obstacles to widespread PHEV market penetration. We discuss how our results help to inform agent-based models of PHEV market penetration, governmental policies, and manufacturer pricing and marketing strategies to promote consumer adoption of PHEVs.  相似文献   

11.
The introduction of connected and autonomous vehicles will bring changes to the highway driving environment. Connected vehicle technology provides real-time information about the surrounding traffic condition and the traffic management center’s decisions. Such information is expected to improve drivers’ efficiency, response, and comfort while enhancing safety and mobility. Connected vehicle technology can also further increase efficiency and reliability of autonomous vehicles, though these vehicles could be operated solely with their on-board sensors, without communication. While several studies have examined the possible effects of connected and autonomous vehicles on the driving environment, most of the modeling approaches in the literature do not distinguish between connectivity and automation, leaving many questions unanswered regarding the implications of different contemplated deployment scenarios. There is need for a comprehensive acceleration framework that distinguishes between these two technologies while modeling the new connected environment. This study presents a framework that utilizes different models with technology-appropriate assumptions to simulate different vehicle types with distinct communication capabilities. The stability analysis of the resulting traffic stream behavior using this framework is presented for different market penetration rates of connected and autonomous vehicles. The analysis reveals that connected and autonomous vehicles can improve string stability. Moreover, automation is found to be more effective in preventing shockwave formation and propagation under the model’s assumptions. In addition to stability, the effects of these technologies on throughput are explored, suggesting substantial potential throughput increases under certain penetration scenarios.  相似文献   

12.
Use of electric vehicles (EVs) has been viewed by many as a way to significantly reduce oil dependence, operate vehicles more efficiently, and reduce carbon emissions. Due to the potential benefits of EVs, the federal and local governments have allocated considerable funding and taken a number of legislative and regulatory steps to promote EV deployment and adoption. With this momentum, it is not difficult to see that in the near future EVs could gain a significant market penetration, particularly in densely populated urban areas with systemic air quality problems. We will soon face one of the biggest challenges: how to improve efficiency for EV transportation system? This research takes the first step in tackling this challenge by addressing a fundamental issue, i.e. how to measure and estimate EVs’ energy consumption. In detail, this paper first presents a system which can collect in-use EV data and vehicle driving data. This system then has been installed in an EV conversion vehicle built in this research as a test vehicle. Approximately 5 months of EV data have been collected and these data have been used to analyze both EV performance and driver behaviors. The analysis shows that the EV is more efficient when driving on in-city routes than driving on freeway routes. Further investigation of this particular EV driver’s route choice behavior indicates that the EV user tries to balance the trade-off between travel time and energy consumption. Although more data are needed in order to generalize this finding, this observation could be important and might bring changes to the traffic assignment for future transportation system with a significant share of EVs. Additionally, this research analyzes the relationships among the EV’s power, the vehicle’s velocity, acceleration, and the roadway grade. Based on the analysis results, this paper further proposes an analytical EV power estimation model. The evaluation results using the test vehicle show that the proposed model can successfully estimate EV’s instantaneous power and trip energy consumption. Future research will focus on applying the proposed EV power estimation model to improve EVs’ energy efficiency.  相似文献   

13.
While connected, highly automated, and autonomous vehicles (CAVs) will eventually hit the roads, their success and market penetration rates depend largely on public opinions regarding benefits, concerns, and adoption of these technologies. Additionally, the introduction of these technologies is accompanied by uncertainties in their effects on the carsharing market and land use patterns, and raises the need for tolling policies to appease the travel demand induced due to the increased convenience. To these ends, this study surveyed 1088 respondents across Texas to understand their opinions about smart vehicle technologies and related decisions. The key summary statistics indicate that Texans are willing to pay (WTP) $2910, $4607, $7589, and $127 for Level 2, Level 3, and Level 4 automation and connectivity, respectively, on average. Moreover, affordability and equipment failure are Texans’ top two concerns regarding AVs. This study also estimates interval regression and ordered probit models to understand the multivariate correlation between explanatory variables, such as demographics, built-environment attributes, travel patterns, and crash histories, and response variables, including willingness to pay for CAV technologies, adoption rates of shared AVs at different pricing points, home location shift decisions, adoption timing of automation technologies, and opinions about various tolling policies. The practically significant relationships indicate that more experienced licensed drivers and older people associate lower WTP values with all new vehicle technologies. Such parameter estimates help not only in forecasting long-term adoption of CAV technologies, but also help transportation planners in understanding the characteristics of regions with high or low future-year CAV adoption levels, and subsequently, develop smart strategies in respective regions.  相似文献   

14.
This paper presents an integrated multi-agent approach, coupled with percolation theory and network science, to measure the mobility impacts (i.e., mean travel time of the system) of connected vehicle (CVtio) network at varying levels of market penetration rate. We capture the characteristics of a CV network, i.e., node degree distribution, vehicular clustering, and giant component size to verify the existence of percolation phenomenon, and further connect the emergence of mobility benefits to the percolation phase transition in the CV network. We show the percolation phase transition properties to appear in a dynamic CV network with time-correlated link and node dynamics. An analytical framework was developed to evaluate the CV network attributes with varying market penetrations (MP) and connection ranges (CR) to identify percolation phenomenon in a mixed CV and Non-CV environment. In addition, a multi-agent CV simulation platform was created to further measure (1) how varying MPs and CRs affect the network-wide mobility measured by the mean travel time of the network; and (2) when percolation transition occurs in CV network to capture the critical MP and CR. Percolation phenomenon in CV network was further validated with the analytical assessments. The results show that (1) percolation phase transition phenomenon is a function of both market penetration and communication range; (2) percolation phase transitions in both mobility and CV network are highly correlated; (3) the application can reduce the average travel time of the system by up to 20% with reasonable market penetration and communication range; (4) critical market penetration is sensitive to communication range, and vice versa; (5) at least 70% of the CVs on the network are required to show in the same cluster for mobility benefits to appear; and (6) for high levels of MP or CR, a low probability of connectivity (PC) does not dramatically change the mean travel time. These results provide solid supports to create evidence-driven frameworks to guide future CV deployment and CV network analysis.  相似文献   

15.
This paper analyzes personal and car-sharing characteristics of commuters at university in Los Angeles, California. These commuters do not hold an on-campus parking permit and commute by an alternative mode other than driving alone. Each month, the university offers them 8 h free use of shared vehicles across the campus. University employee car-sharers’ housing distribution is significantly different from that of their counterparts who drive to work. Commuter benefits influence not only the participation rate of a car-sharing program but also the program participants’ frequency, time and quantity of car-sharing consumption. Car-sharing is most popular among bus commuters, university students and female employees.  相似文献   

16.
Recently, policy makers’ expectations about the role of electric cars in reducing emissions have risen substantially. In parallel, academic research on purchase intentions has dramatically increased. Originally, most studies have focused on utility attributes and price. More recently, several hybrid choice models have been estimated to include the impact of attitudes on choice probabilities. In addition, a few studies have caught the attention to social influence. In contributing to this line of research, this paper reports the results of an expanded hybrid choice, which simultaneously estimated all these different effects in a single integrated model of purchase intention. Results indicate that the model performs well. Costs considerations contribute most to the utility of electric cars. Social influence is less important, but there is also evidence that people tend to take it into consideration when there are positive public opinions about electric cars and the market share becomes almost half of friends of their social network. The intention to purchase an electric car is also influenced by attitudes about environmental concerns and technology acceptance.  相似文献   

17.
Sara Tilley 《运输评论》2017,37(3):344-364
This paper presents a dynamic model at three levels to understand changing mobility trends at the population level. A multi-level framework is proposed that enables existing research and analysis to be considered in a more holistic sense. This framework assists in identifying predictions and transition pathways for different birth cohorts, particularly as they reach older age. This has the aim of bringing about a greater understanding of the socio-demographic influence on mobility trends, with a focus on the cultural transitions that affect birth cohorts differently in terms of their travel behaviour. The framework presented here captures the multi-level forces and structural effects that impact mobility. The paper examines how these forces and effects interact at different levels to influence the changing mobility of birth cohorts at different points in time. Examining the simultaneous operation of these levels is of conceptual importance to assist in the interpretation of mobility trends, as well as understanding future mobility implications, of future generations.  相似文献   

18.
A Walking School Bus involves parents or other adults escorting a group of children on a set route to school. The first one was established in 1996 in Canada. They can now be found in a variety of countries, including New Zealand. Many of the benefits associated with them are based on the general benefits of affecting a modal shift away from cars in favour of walking. However, there is still relatively little known about the less quantifiable benefits of them, and there has been some suggestion that they can adversely affect children’s independent mobility. This research examined the perceived benefits of Walking School Buses by interviewing people involved in the day to running of the scheme in Christchurch, New Zealand. The results suggest that walking school buses have many social benefits and that if anything; they encourage children’s independent mobility.  相似文献   

19.
Perception system design is a vital step in the development of an autonomous vehicle (AV). With the vast selection of available off-the-shelf schemes and seemingly endless options of sensor systems implemented in research and commercial vehicles, it can be difficult to identify the optimal system for one’s AV application. This article presents a comprehensive review of the state-of-the-art AV perception technology available today. It provides up-to-date information about the advantages, disadvantages, limits, and ideal applications of specific AV sensors; the most prevalent sensors in current research and commercial AVs; autonomous features currently on the market; and localization and mapping methods currently implemented in AV research. This information is useful for newcomers to the AV field to gain a greater understanding of the current AV solution landscape and to guide experienced researchers towards research areas requiring further development. Furthermore, this paper highlights future research areas and draws conclusions about the most effective methods for AV perception and its effect on localization and mapping. Topics discussed in the Perception and Automotive Sensors section focus on the sensors themselves, whereas topics discussed in the Localization and Mapping section focus on how the vehicle perceives where it is on the road, providing context for the use of the automotive sensors. By improving on current state-of-the-art perception systems, AVs will become more robust, reliable, safe, and accessible, ultimately providing greater efficiency, mobility, and safety benefits to the public.  相似文献   

20.
Well-defined relationships between flow and density averaged spatially across urban traffic networks, more commonly known as Macroscopic Fundamental Diagrams (MFDs), have been recently verified to exist in reality. Researchers have proposed using MFDs to monitor the status of urban traffic networks and to inform the design of network-wide traffic control strategies. However, it is also well known that empirical MFDs are not easy to estimate in practice due to difficulties in obtaining the requisite data needed to construct them. Recent works have devised ways to estimate a network’s MFD using limited trajectory data that can be obtained from GPS-equipped mobile probe vehicles. These methods assume that the market penetration level of mobile probe vehicles is uniform across the entire set of OD pairs in the network; however, in reality the probe vehicle market penetration rate varies regionally within a network. When this variation is combined with the imbalance of probe trip lengths and travel times, the compound effects will further complicate the estimation of the MFD.To overcome this deficit, we propose a method to estimate a network’s MFD using mobile probe data when the market penetration rates are not necessarily the same across an entire network. This method relies on the determination of appropriate average probe penetration rates, which are weighted harmonic means using individual probe vehicle travel times and distances as the weights. The accuracy of this method is tested using synthetic data generated in the INTEGRATION micro-simulation environment by comparing the estimated MFDs to the ground truth MFD obtained using a 100% market penetration of probe vehicles. The results show that the weighted harmonic mean probe penetration rates outperform simple (arithmetic) average probe penetration rates, as expected. This especially holds true as the imbalance of demand and penetration level increases. Furthermore, as the probe penetration rates are generally not known, an algorithm to estimate the probe penetration rates of regional OD pairs is proposed. This algorithm links count data from sporadic fixed detectors in the network to information from probe vehicles that pass the detectors. The simulation results indicate that the proposed algorithm is very effective. Since the data needed to apply this algorithm are readily available and easy to collect, the proposed algorithm is practically feasible and offers a better approach for the estimation of the MFD using mobile probe data, which are becoming increasingly available in urban environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号