首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 897 毫秒
1.
This paper presents a new concept of urban shared‐taxi services. The proposed system has a new organisational design and pricing scheme that aims to use the capacity in traditional taxi services in a more efficient way. In this system, a taxi acting in ‘sharing’ mode offers lower prices to its clients, in exchange for them to accept sharing the vehicle with other persons who have compatible trips (time and space). The paper proposes and tests an agent‐based simulation model in which a set of rules for space and time matching between a request of a client and the candidate shared taxis is identified. It considers that the client is only willing to accept a maximum deviation from his or her direct route and establishes an objective function for selecting the best candidate taxi. The function considers the minimum travel time combination of pickup and drop‐off of all the pool of clients sharing each taxi while allowing to establish a policy of bonuses to competing taxis with certain number of occupants. An experiment for the city of Lisbon is presented with the objectives of testing the proposed simulation conceptual model and showing the potential of sharing taxis for improving mobility management in urban areas. Results show that the proposed system may lead to significant fare and travel time savings to passengers, while not jeopardising that much the taxi revenues. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, a case study is carried out in Hong Kong for demonstration of the Transport Information System (TIS) prototype. A traffic flow simulator (TFS) is presented to forecast the short‐term travel times that can be served as a predicted travel time database for the TIS in Hong Kong. In the TFS, a stochastic deviation coefficient is incorporated to simulate the minute‐by‐minute fluctuation of traffic flows within the peak hour period. The purposes of the case study are: 1) to show the applicability of the TFS for larger‐scale road network; and 2) to illustrate the short‐term forecasting of path travel times in practice. The results of the case study show that the TFS can be applied to real network effectively. The predicted travel times are compared with the observed travel times on the selected paths for an OD pair. The results show that the observed path travel times fall in the 90% confidence interval of the predicted path travel times.  相似文献   

3.
This paper proposes a new travel time reliability‐based traffic assignment model to investigate the rain effects on risk‐taking behaviours of different road users in networks with day‐to‐day demand fluctuations and variations in travel time. A generalized link travel time function is used to capture the rain effects on vehicle travel times and road conditions. This function is further incorporated into daily demand variations to investigate those travel time variations arising from demand uncertainty and rain condition. In view of these rain effects, road users' perception errors on travel times and risk‐taking behaviours on path choices are incorporated in the proposed model with the use of a logit‐based stochastic user equilibrium framework. This new model is formulated as a variational inequality problem in terms of path flows. A numerical example is used to illustrate the application of the proposed model for assessment of the rain effects on road networks with uncertainty.  相似文献   

4.
Travel times are generally stochastic and spatially correlated in congested road networks. However, very few existing route guidance systems (RGS) can provide reliable guidance services to aid travellers planning their trips with taking account explicitly travel time reliability constraint. This study aims to develop such a RGS with particular consideration of travellers' concern on travel time reliability in congested road networks with uncertainty. In this study, the spatially dependent reliable shortest path problem (SD‐RSPP) is formulated as a multi‐criteria shortest path‐finding problem in road networks with correlated link travel times. Three effective dominance conditions are established for links with different levels of travel time correlations. An efficient algorithm is proposed to solve SD‐RSPP by adaptively using three established dominance conditions. The complexities of road networks in reality are also explicitly considered. To demonstrate the applicability of proposed algorithm, a comprehensive case study is carried out in Hong Kong. The results of case study show that the proposed solution algorithm is robust to take account of travellers' multiple routing criteria. Computational results demonstrate that the proposed solution algorithm can determine the reliable shortest path on real‐time basis for large‐scale road networks. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
This study estimates the effects of an advanced traveler general information system (ATGIS), which includes fuel consumption and health-related emissions cost information on transportation network users’ travel choice behavior for recurrent congestion conditions. The effects are estimated using four different formulations based on four different behavioral assumptions. Incorporating stochastic features in link cost estimation rather than in route choice, we provide a novel modeling approach that enables us to use transportation planning models of major metropolitan areas without a need for major computationally-expensive changes in the existing models. We examined the effects of an ATGIS on the Fresno, CA, road network and found several interesting results. First, the ATGIS impact is closely related to pre-system (prior to the implementation of an ATGIS) perceived fuel and emissions costs. Total travel time in the city can be reduced by 17% (no pre-system perceived costs) to 1% (accurate pre-system perceived costs), and even increased by 1% (higher-than-actual pre-system perceived costs). Second, the addition of emissions costs, although negligible relative to fuel and time costs, can effectively reduce total system-wide travel time by up to 1% and fuel consumption by up to 0.6% during peak hours. Third, the ATGIS can reduce annual social costs by as much as $1053 million (high gas price, no pre-system perception) to $48 million (medium gas price, accurate pre-system perception), which are comparable to social cost savings by a congestion pricing (CP) scheme in the study area.  相似文献   

6.
The aviation community is actively investigating initiatives to reduce aircraft fuel consumption from surface operations, as surface management strategies may face fewer implementation barriers compared with en route strategies. One fuel-saving initiative for the air transportation system is the possibility of holding aircraft at the gate, or the spot, until the point at which they can taxi unimpeded to the departure runway. The extent to which gate holding strategies have financial and environmental benefits hinges on the quantity of fuel that is consumed during surface operations. A pilot of an aircraft may execute the taxi procedure on a single engine or utilize different engine thrust rates during taxi because of a delay. In the following study, we use airline fuel consumption data to estimate aircraft taxi fuel consumption rates during the “unimpeded” and “delayed” portions of taxi time. We find that the fuel consumption attributed to a minute of taxi-out delay is less than that attributed to minute of unimpeded taxi time; for some aircraft types, the fuel consumption rate for a minute of taxi delay is half of that for unimpeded taxi. It is therefore not appropriate, even for rough calculations, to apply nominal taxi fuel consumption rates to convert delayed taxi-out time into fuel burn. On average we find that eliminating taxi delay would reduce overall flight fuel consumption by about 1%. When we consider the savings on an airport-by-airport basis, we find that for some airports the potential reduction from reducing taxi delay is as much as 2%.  相似文献   

7.
Applications of probit‐based stochastic user equilibrium (SUE) principle on large‐scale networks have been largely limited because of the overwhelming computational burden in solving its stochastic network loading problem. A two‐stage Monte Carlo simulation method is recognized to have satisfactory accuracy level when solving this stochastic network loading. This paper thus works on the acceleration of the Monte Carlo simulation method via using distributed computing system. Three distributed computing approaches are then adopted on the workload partition of the Monte Carlo simulation method. Wherein, the first approach allocates each processor in the distributed computing system to solve each trial of the simulation in parallel and in turns, and the second approach assigns all the processors to solve the shortest‐path problems in one trial of the Monte Carlo simulation concurrently. The third approach is a combination of the first two, wherein both different trials of the Monte Carlo simulation as well as the shortest path problems in one trial are solved simultaneously. Performances of the three approaches are comprehensively tested by the Sioux‐Falls network and then a randomly generated network example. It shows that computational time for the probit‐based SUE problem can be largely reduced by any of these three approaches, and the first approach is found out to be superior to the other two. The first approach is then selected to calculate the probit‐based SUE problem on a large‐scale network example. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.

This paper presents an artificial neural network (ANN) based method for estimating route travel times between individual locations in an urban traffic network. Fast and accurate estimation of route travel times is required by the vehicle routing and scheduling process involved in many fleet vehicle operation systems such as dial‐a‐ride paratransit, school bus, and private delivery services. The methodology developed in this paper assumes that route travel times are time‐dependent and stochastic and their means and standard deviations need to be estimated. Three feed‐forward neural networks are developed to model the travel time behaviour during different time periods of the day‐the AM peak, the PM peak, and the off‐peak. These models are subsequently trained and tested using data simulated on the road network for the City of Edmonton, Alberta. A comparison of the ANN model with a traditional distance‐based model and a shortest path algorithm is then presented. The practical implication of the ANN method is subsequently demonstrated within a dial‐a‐ride paratransit vehicle routing and scheduling problem. The computational results show that the ANN‐based route travel time estimation model is appropriate, with respect to accuracy and speed, for use in real applications.  相似文献   

9.
This paper introduces the taxi route network design problem (TXRNDP) for a fixed‐route taxi service operating in Iran and, in similar form, in various other developing countries. The service operates fairly similar to regular transit services in that vehicles are only permitted to follow a certain predetermined route on the network. The service is provided with small size vehicles and main features are that vehicles only depart if full and that there are no intermediate boarding stops. In Iran the service attracts a high modal share but requires better coordination which is the main motivation for the present study. We develop a mathematical programming model to minimize the total travel time experienced by passengers while constraining the number of taxi lines, the trip transfer ratio and the length of taxi lines. A number of assumptions are introduced in order to allow finding an exact rather than heuristic solution. We further develop a linear programming solution to minimize the number of taxis required to serve the previously found fixed‐route taxi network. Results of a case study with the city of Zanjan, Iran, illustrate the resulting taxi flows and suggest the capability of the proposed model to reduce the total travel time, the total waiting time and the number of taxi lines compared to the current taxi operation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Suppose that in an urban transportation network there is a specific advanced traveler information system (ATIS) which acts for reducing the drivers' travel time uncertainty through provision of pre‐trip route information. Because of the imperfect information provided, some travelers are not in compliance with the ATIS advice although equipped with the device. We thus divide all travelers into three groups, one group unequipped with ATIS, another group equipped and in compliance with ATIS advice and the third group equipped but without compliance with the advice. Each traveler makes route choice in a logit‐based manner and a stochastic user equilibrium with multiple user classes is reached for every day. In this paper, we propose a model to investigate the evolutions of daily path travel time, daily ATIS compliance rate and yearly ATIS adoption, in which the equilibrium for every day's route choice is kept. The stability of the evolution model is initially analyzed. Numerical results obtained from a test network are presented for demonstrating the model's ability in depicting the day‐to‐day and year‐to‐year evolutions.  相似文献   

11.
Road transportation is one of the major sources of greenhouse gas emissions. To reduce energy consumption and alleviate this environmental problem, this study aims to develop an eco-routing algorithm for navigation systems. Considering that both fuel consumption and travel time are important factors when planning a trip, the proposed routing algorithm finds a path that consumes the minimum amount of gasoline while ensuring that the travel time satisfies a specified travel time budget and an on-time arrival probability. We first develop link-based fuel consumption models based on vehicle dynamics, and then the Lagrangian-relaxation-based heuristic approach is proposed to efficiently solve this NP-hard problem. The performance of the proposed eco-routing strategy is verified in a large-scale network with real travel time and fuel consumption data. Specifically, a sensitivity analysis of fuel consumption reduction for travel demand and travel time buffer is discussed in our simulation study.  相似文献   

12.
Developing demand responsive transit systems are important with regard to meeting the travel needs for elderly people. Although Dial‐a‐ride Problems (DARP) have been discussed for several decades, most researchers have worked to develop algorithms with low computational cost under the minimal total travel costs, and fewer studies have considered how changes in travel time might affect the vehicle routes and service sequences. Ignoring such variations in travel time when design vehicle routes and schedules might lead to the production of inefficient vehicle routes, as well as incorrect actual vehicle arrival times at the related nodes. The purpose of this paper is to construct a DARP formulation with consideration of time‐dependent travel times and utilizes the traffic simulation software, DynaTAIWAN, to simulate the real traffic conditions in order to obtain the time‐dependent travel time matrices. The branch‐and‐price approach is introduced for the time‐dependent DARP and tested by examining the sub‐network of Kaohsiung City, Taiwan. The numerical results reveal that the length of the time window can significantly affect the vehicle routes and quantitative measurements. As the length of the time window increases, the objective value and the number of vehicles will reduce significantly. However, the CPU time, the average pickup delay time, the average delivery delay time and the average actual ride time (ART)/direct ride time (DRT) will increase significantly as the length of the time window increases. Designing the vehicle routes to reduce operating costs and satisfy the requirements of customers is a difficult task, and a trade‐off must be made between these goals. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
This paper deals with an interesting problem about how to efficiently compute the number of different efficient paths between an origin‐destination pair for a transportation network because these efficient paths are the possible paths used by drivers to some extent. Based on a novel triangle operation derived, it first presents a polynomial‐time combinatorial algorithm that can obtain the number of different simple paths between any two nodes for an acyclic network as well as the total travel cost of these paths. This paper proceeds to develop a combinatorial algorithm with polynomial‐time complexity for both counting the different efficient paths between an origin‐destination pair and calculating the total travel cost of these paths. As for applications, this paper shows that the preceding two algorithms can yield the lower and upper bounds for the number of different simple paths between an origin‐destination pair, while it has already be recognized that a polynomial‐time algorithm getting such a number does not exist for a general network. Furthermore, the latter algorithm can be applied for developing a heuristic method for the traffic counting location problem arising from the origin‐destination matrix estimation problems.  相似文献   

14.
In densely populated and congested urban areas, the travel times in congested multi‐modal transport networks are generally varied and stochastic in practice. These stochastic travel times may be raised from day‐to‐day demand fluctuations and would affect travelers' route and mode choice behaviors according to their different expectations of on‐time arrival. In view of these, this paper presents a reliability‐based user equilibrium traffic assignment model for congested multi‐modal transport networks under demand uncertainty. The stochastic bus frequency due to the unstable travel time of bus route is explicitly considered. By the proposed model, travelers' route and mode choice behaviors are intensively explored. In addition, a stochastic state‐augmented multi‐modal transport network is adopted in this paper to effectively model probable transfers and non‐linear fare structures. A numerical example is given to illustrate the merits of the proposed model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
This study proposes an integrated multi‐objective model to determine the optimal rescue path and traffic controlled arcs for disaster relief operations under uncertainty environments. The model consists of three sub‐models: rescue shortest path model, post‐disaster traffic assignment model, and traffic controlled arcs selection model to minimize four objectives: travel time of rescue path, total detour travel time, number of unconnected trips of non‐victims, and number of police officers required. Since these sub‐models are inter‐related with each other, they are solved simultaneously. This study employs genetic algorithms incorporated with traffic assignment and K‐shortest path methods to determine optimal rescue path and controlled arcs. To cope with uncertain information associated with the damaged network, fuzzy system reliability theory (weakest t‐norm method) is used to measure the access reliability of rescue path. To investigate the validity and applicability of the proposed model, studies on an exemplified case and a field case of Chi‐Chi earthquake in Taiwan are conducted. The performances of three rescue strategies: without traffic control, selective traffic control (i.e. the proposed model) and absolute traffic control are compared. The results show that the proposed model can maintain the efficiency of rescue activity with minimal impact to ordinary trips and number of police officers required.  相似文献   

16.
This study deals with the sensitivity analysis of an equilibrium transportation networks using genetic algorithm approach and uses the bi‐level iterative sensitivity algorithm. Therefore, integrated Genetic Algorithm‐TRANSYT and Path Flow Estimator (GATPFE) is developed for signalized road networks for various level of perceived travel time in order to test the sensitivity of perceived travel time error in an urban stochastic road networks. Level of information provided to drivers correspondingly affects the signal timing parameters and hence the Stochastic User Equilibrium (SUE) link flows. When the information on road system is increased, the road users try to avoid conflicting links. Therefore, the stochastic equilibrium assignment concept tends to be user equilibrium. The GATPFE is used to solve the bi‐level problem, where the Area Traffic Control (ATC) is the upper‐level and the SUE assignment is the lower‐level. The GATPFE is tested for six‐junction network taken from literature. The results show that the integrated GATPFE can be applied to carry out sensitivity analysis at the equilibrium network design problems for various level of information and it simultaneously optimize the signal timings (i.e. network common cycle time, signal stage and offsets between junctions).  相似文献   

17.
18.
In this paper, a multi‐step ahead prediction algorithm of link travel speeds has been developed using a Kalman filtering technique in order to calculate a dynamic shortest path. The one‐step and the multi‐step ahead link travel time prediction models for the calculation of the dynamic shortest path have been applied to the directed test network that is composed of 16 nodes: 3 entrance nodes, 2 exit nodes and 11 internal nodes. Time‐varying traffic conditions such as flows and travel time data for the test network have been generated using the CORSIM model. The results show that the multi‐step ahead algorithm is compared more favorably for searching the dynamic shortest time path than the other algorithm.  相似文献   

19.
We consider a city region with several facilities that are competing for customers of different classes. Within the city region, the road network is dense, and can be represented as a continuum. Customers are continuously distributed over space, and they choose a facility by considering both the transportation cost and market externalities. More importantly, the model takes into account the different transportation cost functions and market externalities to which different customer classes are subjected. A logit‐type distribution of demand is specified to model the decision‐making process of users' facility choice. We develop a sequential optimization approach to decompose the complex multi‐class and multi‐facility problem into a series of smaller single‐class and single‐facility sub‐problems. An efficient solution algorithm is then proposed to solve the resultant problem. A numerical example is given to demonstrate the effectiveness and potential applicability of the proposed methodology.  相似文献   

20.
Yang  Hai 《Transportation》1999,26(3):299-322
When drivers do not have complete information on road travel time and thus choose their routes in a stochastic manner or based on their previous experience, separate implementations of either route guidance or road pricing cannot drive a stochastic network flow pattern towards a system optimum in a Wardropian sense. It is thus of interest to consider a combined route guidance and road pricing system. A road guidance system could reduce drivers' uncertainty of travel time through provision of traffic information. A driver who is equipped with a guidance system could be assumed to receive complete information, and hence be able to find the minimum travel time routes in a user-optimal manner, while marginal-cost road pricing could drive a user-optimal flow pattern toward a system optimum. Therefore, a joint implementation of route guidance and road pricing in a network with recurrent congestion could drive a stochastic network flow pattern towards a system optimum, and thus achieve a higher reduction in system travel time. In this paper the interaction between route guidance and road pricing is modeled and the potential benefit of their joint implementation is evaluated based on a mixed equilibrium traffic assignment model. The private and system benefits under marginal-cost pricing and varied levels of market penetration of the information systems are investigated with a small and a large example. It is concluded that the two technologies complement each other and that their joint implementation can reduce travel time more efficiently in a network with recurrent congestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号