首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Travel time is an important performance measure for transportation systems, and dissemination of travel time information can help travelers make reliable travel decisions such as route choice or departure time. Since the traffic data collected in real time reflects the past or current conditions on the roadway, a predictive travel time methodology should be used to obtain the information to be disseminated. However, an important part of the literature either uses instantaneous travel time assumption, and sums the travel time of roadway segments at the starting time of the trip, or uses statistical forecasting algorithms to predict the future travel time. This study benefits from the available traffic flow fundamentals (e.g. shockwave analysis and bottleneck identification), and makes use of both historical and real time traffic information to provide travel time prediction. The methodological framework of this approach sequentially includes a bottleneck identification algorithm, clustering of traffic data in traffic regimes with similar characteristics, development of stochastic congestion maps for clustered data and an online congestion search algorithm, which combines historical data analysis and real-time data to predict experienced travel times at the starting time of the trip. The experimental results based on the loop detector data on Californian freeways indicate that the proposed method provides promising travel time predictions under varying traffic conditions.  相似文献   

2.
This paper presents a model-based multiobjective control strategy to reduce bus bunching and hence improve public transport reliability. Our goal is twofold. First, we define a proper model, consisting of multiple static and dynamic components. Bus-following model captures the longitudinal dynamics taking into account the interaction with the surrounding traffic. Furthermore, bus stop operations are modeled to estimate dwell time. Second, a shrinking horizon model predictive controller (MPC) is proposed for solving bus bunching problems. The model is able to predict short time-space behavior of public transport buses enabling constrained, finite horizon, optimal control solution to ensure homogeneity of service both in time and space. In this line, the goal with the selected rolling horizon control scheme is to choose a proper velocity profile for the public transport bus such that it keeps both timetable schedule and a desired headway from the bus in front of it (leading bus). The control strategy predicts the arrival time at a bus stop using a passenger arrival and dwell time model. In this vein, the receding horizon model predictive controller calculates an optimal velocity profile based on its current position and desired arrival time. Four different weighting strategies are proposed to test (i) timetable only, (ii) headway only, (iii) balanced timetable - headway tracking and (iv) adaptive control with varying weights. The controller is tested in a high fidelity traffic simulator with realistic scenarios. The behavior of the system is analyzed by considering extreme disturbances. Finally, the existence of a Pareto front between these two objectives is also demonstrated.  相似文献   

3.
As one of the most promising bus priority techniques, the innovative intermittent bus lane (IBL) strategy has drawn more attention in the past few years. In this paper, some improvements on the operation of the IBL strategy are proposed, and two cellular automaton models for a roadway section with two lanes, one with no bus priority and the other with an intermittent bus lane, are built to study the characteristics of urban traffic flow. Computer simulations and analytical models are developed to conduct quantitative research on the influence of IBL on the traffic density distribution, traffic velocity, and traffic capacity of the roadway section. By comparing the average paces in the two cases, this paper proposes a methodology to determine suitable traffic conditions for the IBL strategy implementation. The results indicate that for the designed scenarios, the IBL strategy is effective only when the traffic density is in the range of 25 to 74 pcu/km, which suggests that level of service C is the inflection point for implementing the IBL strategy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Outliers in traffic flow series represent uncommon events occurring in the roadway systems and outlier detection and investigation will help to unravel the mechanism of such events. However, studies on outlier detection and investigations are fairly limited in transportation field where a vast volume of traffic condition data has been collected from traffic monitoring devices installed in many roadway systems. Based on an online algorithm that has the ability of jointly predict the level and the conditional variance of the traffic flow series, a real time outlier detection method is proposed and implemented. Using real world data collected from four regions in both the United States and the United Kingdom, it was found that outliers can be detected using the proposed detection strategy. In addition, through a comparative experimental study, it was shown that the information contained in the outliers should be assimilated into the forecasting system to enhance its ability of adapting to the changing patterns of the traffic flow series. Moreover, the investigation into the effects of outliers on the forecasting system structure showed a significant connection between the outliers and the forecasting system parameters changes. General conclusions are provided concerning the analyses with future work recommended to investigate the underlying outlier generating mechanism and outlier treatment strategy in transportation applications.  相似文献   

5.
Recently connected vehicle (CV) technology has received significant attention thanks to active pilot deployments supported by the US Department of Transportation (USDOT). At signalized intersections, CVs may serve as mobile sensors, providing opportunities of reducing dependencies on conventional vehicle detectors for signal operation. However, most of the existing studies mainly focus on scenarios that penetration rates of CVs reach certain level, e.g., 25%, which may not be feasible in the near future. How to utilize data from a small number of CVs to improve traffic signal operation remains an open question. In this work, we develop an approach to estimate traffic volume, a key input to many signal optimization algorithms, using GPS trajectory data from CV or navigation devices under low market penetration rates. To estimate traffic volumes, we model vehicle arrivals at signalized intersections as a time-dependent Poisson process, which can account for signal coordination. The estimation problem is formulated as a maximum likelihood problem given multiple observed trajectories from CVs approaching to the intersection. An expectation maximization (EM) procedure is derived to solve the estimation problem. Two case studies were conducted to validate our estimation algorithm. One uses the CV data from the Safety Pilot Model Deployment (SPMD) project, in which around 2800 CVs were deployed in the City of Ann Arbor, MI. The other uses vehicle trajectory data from users of a commercial navigation service in China. Mean absolute percentage error (MAPE) of the estimation is found to be 9–12%, based on benchmark data manually collected and data from loop detectors. Considering the existing scale of CV deployments, the proposed approach could be of significant help to traffic management agencies for evaluating and operating traffic signals, paving the way of using CVs for detector-free signal operation in the future.  相似文献   

6.
Travel time information influences driver behaviour and can contribute to reducing congestion and improving network efficiency. Consequently many road authorities disseminate travel time information on road side signs, web sites and radio traffic broadcasts. Operational systems commonly rely on speed data obtained from inductive loop detectors and estimate travel times using simple algorithms that are known to provide poor predictions particularly on either side of the peak period. This paper presents a new macroscopic model for predicting freeway travel times which overcomes the limitations of operational ‘instantaneous’ speed models by drawing on queuing theory to model the processing of vehicles in sections or cells of the freeway. The model draws on real-time speed, flow and occupancy data and is formulated to accommodate varying geometric conditions, the relative distribution of vehicles along the freeway, variations in speed limits, the impact of ramp flows and fixed or transient bottlenecks. Field validation of the new algorithm was undertaken using data from two operational freeways in Melbourne, Australia. Consistent with the results of simulation testing, the validation confirmed that the recursive model provided a substantial improvement in travel time predictions when compared to the model currently used to provide real-time travel time information to motorists in Melbourne.  相似文献   

7.
This paper presents a transit simulation model designed to support evaluation of operations, planning and control, especially in the context of Advanced Public Transportation Systems (APTS). Examples of potential applications include frequency determination, evaluation of real-time control strategies for schedule maintenance and assessing the effects of vehicle scheduling on the level of service. Unlike most previous efforts in this area, the simulation model is built on a platform of a mesoscopic traffic simulation model, which allows modeling of the operation dynamics of large-scale transit systems taking into account the stochasticity due to interactions with road traffic. The capabilities of Mezzo as an evaluation tool of transit operations are demonstrated with an application to a real-world high-demand bus line in the Tel-Aviv metropolitan area under various scenarios. The headway distributions at two stops are compared with field observations and show good consistency between simulated and observed data.  相似文献   

8.
This paper describes the process of developing a GIS-based traffic accident information system. A roadway network in Kent County, Delaware, was selected to demonstrate the graphic database. The development of the graphic and attribute databases on a workstation environment is described. Software was developed to graphically represent accident information pertaining to any point on the roadway network, and outputs for typical case scenarios are presented. The software also has the capability of displaying historical accident information pertaining to the site. This aspect would be helpful to the planner or designer in studying the impact of a particular roadway design with respect to safety. Some thoughts for future extensions of this study are also presented. Finally, it is concluded that a carefully designed GIS system can efficiently help transportation professionals with traffic safety studies and that its capabilities can be extended to include other areas such as pavement and inventory management, transit applications, and executive information systems.  相似文献   

9.
This paper presents an empirical investigation into platooning on two-lane two-way highways. The main objective is to better understand this phenomenon that has important implications on traffic performance and safety. Field data from three study sites in the state of Montana were used in this study. Separate investigations were performed to examine the relationships among platoon-related variables, namely; time headway, travel speed, and platoon size. The study confirmed that interaction between successive vehicles in the traffic stream generally diminishes beyond a time headway threshold value that fell in the range of 5–7 seconds. Also, the study revealed that very short headways (less than one second) are more associated with aggressive driving and higher speeds than with slow-moving platoons due to lack of passing opportunities. Further, the study found that amount of impedance to traffic is proportional to the size of platoon as evidenced by the relative difference between mean speed of various size platoons and the mean speed of unimpeded vehicles. The study provided other valuable insights into the platooning phenomenon on two-lane highways that are essential in developing a better understanding of traffic operation on two-lane highways.  相似文献   

10.
The constant increase in air traffic demand increases a probability of the separation minima infringements in certain areas as a consequence of increased traffic density. The Annual Safety Report 2016 reports that in recent years the number of infringements, measured per million flight hours, had been increased at a lower rate (Eurocontrol, 2018). However, this level of infringements still generates a continuous pressure on the air traffic control (ATC) system and seeks for more control resources ready to tactically solve potential conflicts, while increasing at the same time the operational costs. Considering present air traffic management (ATM) trade-off criteria: increased airspace capacity and traffic efficiency but reducing the cost while preserving safety, new services must be designed to distribute the separation management ATC task loads among other actors. Based on the Single European Sky Air Traffic Management Research and Next Generation Air Transportation System initiatives, this paper proposes an innovative separation management service to shift the completely centralized tactical ATC interventions to more efficient decentralized tactical operations relying on an advanced surrounding traffic analysis tool, to preserve the safety indicators while considering the operational efficiency. A developed methodology for the proposed service is an application-oriented, trying to respond to characteristics and requirements of the current operational environment. The paper further analysis the traffic complexity taking into consideration the so-called domino effect, i.e. a number of the surrounding aircraft causally involved in the separation management service by the means of identification of the spatiotemporal interdependencies between them and the conflicting aircraft. This complexity is driven by the interdependencies structure and expressed as a time-criticality in quantifying the total number of the system solutions, that varies over time as the aircraft are approaching to each other. The results from two randomly selected ecosystem scenarios, extracted from a simulated traffic, illustrate different avoidance capacities for a given look-ahead time and the system solutions counts, that in discrete moments reach zero value.  相似文献   

11.
Estimation of time-dependent arterial travel time is a challenging task because of the interrupted nature of urban traffic flows. Many research efforts have been devoted to this topic, but their successes are limited and most of them can only be used for offline purposes due to the limited availability of traffic data from signalized intersections. In this paper, we describe a real-time arterial data collection and archival system developed at the University of Minnesota, followed by an innovative algorithm for time-dependent arterial travel time estimation using the archived traffic data. The data collection system simultaneously collects high-resolution “event-based” traffic data including every vehicle actuations over loop detector and every signal phase changes from multiple intersections. Using the “event-based” data, we estimate time-dependent travel time along an arterial by tracing a virtual probe vehicle. At each time step, the virtual probe has three possible maneuvers: acceleration, deceleration and no-speed-change. The maneuver decision is determined by its own status and surrounding traffic conditions, which can be estimated based on the availability of traffic data at intersections. An interesting property of the proposed model is that travel time estimation errors can be self-corrected, because the trajectory differences between a virtual probe vehicle and a real one can be reduced when both vehicles meet a red signal phase and/or a vehicle queue. Field studies at a 11-intersection arterial corridor along France Avenue in Minneapolis, MN, demonstrate that the proposed model can generate accurate time-dependent travel times under various traffic conditions.  相似文献   

12.
A major source of urban freeway delay in the U.S. is non-recurring congestion caused by incidents. The automated detection of incidents is an important function of a freeway traffic management center. A number of incident detection algorithms, using inductive loop data as input, have been developed over the past several decades, and a few of them are being deployed at urban freeway systems in major cities. These algorithms have shown varying degrees of success in their detection performance. In this paper, we present a new incident detection technique based on artificial neural networks (ANNs). Three types of neural network models, namely the multi-layer feedforward (MLF), the self-organizing feature map (SOFM) and adaptive resonance theory 2 (ART2), were developed to classify traffic surveillance data obtained from loop detectors, with the objective of using the classified output to detect lane-blocking freeway incidents. The models were developed with simulation data from a study site and tested with both simulation and field data at the same site. The MLF was found to have the highest potential, among the three ANNs, to achieve a better incident detection performance. The MLF was also tested with limited field data collected from three other freeway locations to explore its transferability. Our results and analyzes with data from the study site as well as the three test sites have shown that the MLF consistently detected most of the lane-blocking incidents and typically gave a false alarm rate lower than the California, McMaster and Minnesota algorithms currently in use.  相似文献   

13.
Capacity measurement of roads under mixed traffic conditions as prevailing in India is ambiguous as it varies with time, composition of traffic and roadway encroachments. High incidence of slow moving vehicles and tricycles adds to the problem. Volume - capacity ratio appears to be an inadequate measure of defining level of service under mixed traffic situations. An attempt is made in this paper to explore the possibility of presenting unconventional parameters like standard deviation of speed, co-efficient of variation of speed and acceleration noise as possible measures of level of service. Tentative ranges of acceleration noise are proposed in association with flow and speed to explain level of service of urban roads catering to mixed traffic. The results are based on a study conducted in Madras, a major metropolitan city of India.  相似文献   

14.
With the recent increase in the deployment of ITS technologies in urban areas throughout the world, traffic management centers have the ability to obtain and archive large amounts of data on the traffic system. These data can be used to estimate current conditions and predict future conditions on the roadway network. A general solution methodology for identifying the optimal aggregation interval sizes for four scenarios is proposed in this article: (1) link travel time estimation, (2) corridor/route travel time estimation, (3) link travel time forecasting, and (4) corridor/route travel time forecasting. The methodology explicitly considers traffic dynamics and frequency of observations. A formulation based on mean square error (MSE) is developed for each of the scenarios and interpreted from a traffic flow perspective. The methodology for estimating the optimal aggregation size is based on (1) the tradeoff between the estimated mean square error of prediction and the variance of the predictor, (2) the differences between estimation and forecasting, and (3) the direct consideration of the correlation between link travel time for corridor/route estimation and forecasting. The proposed methods are demonstrated using travel time data from Houston, Texas, that were collected as part of the automatic vehicle identification (AVI) system of the Houston Transtar system. It was found that the optimal aggregation size is a function of the application and traffic condition.
Changho ChoiEmail:
  相似文献   

15.
This paper reports on a study that developed a next‐generation Transit Signal Priority (TSP) strategy, Adaptive TSP, that controls adaptively transit operations of high frequency routes using traffic signals, thus automating the operations control task and relieving transit agencies of this burden. The underlying algorithm is based on Reinforcement Learning (RL), an emerging Artificial Intelligence method. The developed RL agent is responsible for determining the best duration of each signal phase such that transit vehicles can recover to the scheduled headway taking into consideration practical phase length constraints. A case study was carried out by employing the microscopic traffic simulation software Paramics to simulate transit and traffic operations at one signalized intersection along the King Streetcar route in downtown Toronto. The results show that the control policy learned by the agent could effectively reduce the transit headway deviation and causes smaller disruption to cross street traffic compared with the existing unconditional transit signal priority algorithm.  相似文献   

16.
A promising alternative transportation mode to address growing transportation and environmental issues is bicycle transportation, which is human-powered and emission-free. To increase the use of bicycles, it is fundamental to provide bicycle-friendly environments. The scientific assessment of a bicyclist’s perception of roadway environment, safety and comfort is of great interest. This study developed a methodology for categorizing bicycling environments defined by the bicyclist’s perceived level of safety and comfort. Second-by-second bicycle speed data were collected using global positioning systems (GPS) on public bicycles. A set of features representing the level of bicycling environments was extracted from the GPS-based bicycle speed and acceleration data. These data were used as inputs for the proposed categorization algorithm. A support vector machine (SVM), which is a well-known heuristic classifier, was adopted in this study. A promising rate of 81.6% for correct classification demonstrated the technical feasibility of the proposed algorithm. In addition, a framework for bicycle traffic monitoring based on data and outcomes derived from this study was discussed, which is a novel feature for traffic surveillance and monitoring.  相似文献   

17.
Past studies have shown that the level of roadway lighting is an important factor for nighttime roadway safety. To evaluate roadway lighting systems and maintain their functionality, it is essential to perform field lighting measurements. Currently, field measurements of roadway lighting systems are often conducted by handheld light meters using a short sample section. The evaluation of an entire corridor or a longer section is difficult when using the traditional manual measurement methods. This paper addresses this difficulty by developing a new lighting measurement system that can be used to collect massive amounts of lighting level data in an efficient, safe, and effective manner. The system consists of a light meter, a distance measurement instrument (DMI), a computer, software, and an electronic converter circuit to connect the computer and other hardware. Software was developed for the communication link between the computer and the light meter, and to record both the distance and illuminance data. The system was calibrated and validated with the field data. The new system will not only reduce future data collection costs, but also improve safety for field data collection personnel. The system has been approved for use to collect illuminance data on Florida state roads greater than or equal to 250-miles in length.  相似文献   

18.
Many car-following models predict a stable car-following behavior with a very small fluctuation around an equilibrium value g1 of the net headway g with zero speed-difference Δv between the following and the lead vehicle. However, it is well-known and additionally demonstrated by data in this paper, that the fluctuations are much larger than these models predict. Typically, the fluctuation in speed difference is around ±2 m/s, while the fluctuation in the net time headway T = g/v can be as big as one or even two seconds, which is as large as the mean time headway itself. By analyzing data from loop detectors as well as data from vehicle trajectories, evidence is provided that this randomness is not due to driver heterogeneity, but can be attributed to an internal stochasticity of the driver itself. A final model-based analysis supports the hypothesis, that the preferred headway of the driver is the parameter that is not kept constant but fluctuates strongly, thus causing the even macroscopically observable randomness in traffic flow.  相似文献   

19.
A high fidelity cell based traffic simulation model (CELLSIM) has been developed for simulation of high volume of traffic at the regional level. Straightforward algorithms and efficient use of computational resources make the model suitable for real time traffic simulation. The model formulation uses concepts of cellular automata (CA) and car-following (CF) models, but is more detailed than CA models and has realistic acceleration and deceleration models for vehicles. A simple dual-regime constant acceleration model has been used that requires minimal calculation compared to detailed acceleration models used in CF models. CELLSIM is simpler than most CF models; a simplified car-following logic has been developed using preferred time headway. Like CA models, integer values are used to make the model run faster. Space is discretized in small intervals and a new concept of percent space occupancy (SOC) is used to measure traffic congestion. CELLSIM performs well in congested and non-congested traffic conditions. It has been validated comprehensively at the macroscopic and microscopic levels using two sets of field data. Comparison of field data and CELLSIM for trajectories, average speed, density and volume show very close agreement. Statistical comparison of macroscopic parameters with other CF models indicates that CELLSIM performs as good as detailed CF models. Stability analyses conducted using mild and severe disturbances indicate that CELLSIM performs well under both conditions.  相似文献   

20.
Abstract

This paper revisits the classical transit scheduling problem and investigates the relationship between stop spacing and headway, considering realistic wait time and operable transit capacity. Headway and stop spacing are important determinants for planning a transit system, which influence the service level as well as the cost of operation. A mathematical model is developed, and the objective function is user travel time which is minimized by the optimized stop spacing and headway, subject to the constraints of operable fleet size and route capacity. Optimal stop spacing and headway solutions are obtained in a numerical example. Sensitivity analysis is conducted, and the effect of model parameters on user travel time is explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号