首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a method of estimating a traffic state based on probe vehicle data that contain spacing and position of probe vehicles. The probe vehicles were assumed to observe spacing by utilizing an advanced driver assistance system, that has been implemented in practice and is expected to spread in the near future. The proposed method relies on the conservation law of the traffic flow but is independent of a fundamental diagram. The conservation law is utilized for reasonable aggregation of the spacing data to acquire the traffic state, i.e., a flow, density and speed. Its independence from a fundamental diagram means that the proposed method does not require predetermined nor exogenous assumptions with regard to the traffic flow model parameters. The proposed method was validated through a simulation experiment under ideal conditions and a field experiment conducted under actual traffic conditions; and empirical characteristics of the proposed method were investigated.  相似文献   

2.
A promising framework that describes traffic conditions in urban networks is the macroscopic fundamental diagram (MFD), relating average flow and average density in a relatively homogeneous urban network. It has been shown that the MFD can be used, for example, for traffic access control. However, an implementation requires an accurate estimation of the MFD with the available data sources.Most scientific literature has considered the estimation of MFDs based on either loop detector data (LDD) or floating car data (FCD). In this paper, however, we propose a methodology for estimating the MFD based on both data sources simultaneously. To that end, we have defined a fusion algorithm that separates the urban network into two sub-networks, one with loop detectors and one without. The LDD and the FCD are then fused taking into account the accuracy and network coverage of each data type. Simulations of an abstract grid network and the network of the city of Zurich show that the fusion algorithm always reduces the estimation error significantly with respect to an estimation where only one data source is used. This holds true, even when we account for the fact that the probe penetration rate of FCD needs to be estimated with loop detectors, hence it might also include some errors depending on the number of loop detectors, especially when probe vehicles are not homogeneously distributed within the network.  相似文献   

3.
In this study, we develop a multilane first-order traffic flow model for freeway networks. In the model, lane changing is considered as a stochastic behavior that can decrease an individual driver’s disutility or cost, and is represented as dynamics toward the equilibrium of lane-flow distribution along with longitudinal traffic dynamics. The proposed method can be differentiated from those in previous studies because in this study, the motivation of lane changing is explicitly considered and it is treated as a utility defined by the current macroscopic traffic state. In addition, the entire process of lane changing is computed macroscopically by an extension of the kinematic wave theory employing IT principle; moreover, in the model framework, the lane-flow equilibrium curve is endogenously generated because of self-motivated lane changes. Furthermore, the parsimonious representation enables parameter calibration using the data collected from conventional loop detectors. The calibration of the data collected at four different sites, including a sag bottleneck, on the Chugoku expressway in Japan reveals that the proposed method can represent the lane-flow distribution of any observation site with high accuracy, and that the estimated parameters can reasonably explain the multilane traffic dynamics and the bottleneck phenomena uphill of sag sections.  相似文献   

4.
Loop detectors are the oldest and widely used traffic data source. On urban arterials, they are mainly installed for signal control. Recently state-of-the art Bluetooth MAC Scanners (BMS) has significantly captured the interest of stakeholders for exploiting it for area-wide traffic monitoring. Loop detectors provide flow – a fundamental traffic parameter; whereas BMS provides individual vehicle travel time between BMS stations. Hence, these two data sources complement each other, and if integrated should increase the accuracy and reliability of the traffic state estimation.This paper proposed a model that integrates loops and BMS data for seamless travel time and density estimation for urban signalised network. The proposed model is validated using both real and simulated data and the results indicate that the accuracy of the proposed model is over 90%.  相似文献   

5.
For uninterrupted traffic flow, it is well-known that the fundamental diagram (FD) describes the relationship between traffic flow and density under steady state. For interrupted traffic flow on a signalized road, it has been recognized that the arterial fundamental diagram (AFD) is significantly affected by signal operations. But little research up to date has discussed in detail how signal operations impact the AFD. In this paper, based upon empirical observations from high-resolution event-based traffic signal data collected from a major arterial in the Twin Cities area, we study the impacts of g/C ratio, signal coordination, and turning movements on the cycle-based AFD, which describes the relationship between traffic flow and occupancy in a signal cycle. By microscopically investigating individual vehicle trajectories from event-based data, we demonstrate that not only g/C ratio constrains the capacity of a signalized approach, poor signal coordination and turning movements from upstream intersections also have significant impact on the capacity. We show that an arterial link may not be congested even with high occupancy values. Such high values could result from queue build-up during red light that occupies the detector, i.e. the Queue-Over-Detector (QOD) phenomenon discussed in this paper. More importantly, by removing the impact of QOD, a stable form of AFD is revealed, and one can use that to identify three different regimes including under-saturation, saturation, and over-saturation with queue spillovers. We believe the stable form of AFD is of great importance for traffic signal control because of its ability to identify traffic states on a signal link.  相似文献   

6.
The fundamental diagram, as the graphical representation of the relationships among traffic flow, speed, and density, has been the foundation of traffic flow theory and transportation engineering. Seventy-five years after the seminal Greenshields model, a variety of models have been proposed to mathematically represent the speed-density relationship which underlies the fundamental diagram. Observed in these models was a clear path toward two competing goals: mathematical elegance and empirical accuracy. As the latest development of such a pursuit, this paper presents a family of speed-density models with varying numbers of parameters. All of these models perform satisfactorily and have physically meaningful parameters. In addition, speed variation with traffic density is accounted for; this enables statistical approaches to traffic flow analysis. The results of this paper not only improve our understanding of traffic flow but also provide a sound basis for transportation engineering studies.  相似文献   

7.
Traditional macroscopic traffic flow modeling framework adopts the spatial–temporal coordinate system to analyze traffic flow dynamics. With such modeling and analysis paradigm, complications arise for traffic flow data collected from mobile sensors such as probe vehicles equipped with mobile phones, Bluetooth, and Global Positioning System devices. The vehicle‐based measurement technologies call for new modeling thoughts that address the unique features of moving measurements and explore their full potential. In this paper, we look into the concept of vehicular fundamental diagram (VFD) and discuss its engineering implications. VFD corresponds to a conventional fundamental diagram (FD) in the kinematic wave (KW) theory that adopts space–time coordinates. Similar to the regular FD in the KW theory, VFD encapsulates all traffic flow dynamics. In this paper, to demonstrate the full potential of VFD in interpreting multilane traffic flow dynamics, we generalize the classical Edie's formula and propose a direct approach of reconstructing VFD from traffic measurements in the vehicular coordinates. A smoothing algorithm is proposed to effectively reduce the nonphysical fluctuation of traffic states calculated from multilane vehicle trajectories. As an example, we apply the proposed methodology to explore the next‐generation simulation datasets and identify the existence and forms of shock waves in different coordinate systems. Our findings provide empirical justifications and further insight for the Lagrangian traffic flow theory and models when applied in practice. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Truck flow patterns are known to vary by season and time-of-day, and to have important implications for freight modeling, highway infrastructure design and operation, and energy and environmental impacts. However, such variations cannot be captured by current truck data sources such as surveys or point detectors. To facilitate development of detailed truck flow pattern data, this paper describes a new truck tracking algorithm that was developed to estimate path flows of trucks by adopting a linear data fusion method utilizing weigh-in-motion (WIM) and inductive loop point detectors. A Selective Weighted Bayesian Model (SWBM) was developed to match individual vehicles between two detector locations using truck physical attributes and inductive waveform signatures. Key feature variables were identified and weighted via Bayesian modeling to improve vehicle matching performance. Data for model development were collected from two WIM sites spanning 26 miles in California where only 11 percent of trucks observed at the downstream site traversed the whole corridor. The tracking model showed 81 percent of correct matching rate to the trucks declared as through trucks from the algorithm. This high accuracy showed that the tracking model is capable of not only correctly matching through vehicles but also successfully filtering out non-through vehicles on this relatively long distance corridor. In addition, the results showed that a Bayesian approach with full integration of two complementary detector data types could successfully track trucks over long distances by minimizing the impacts of measurement variations or errors from the detection systems employed in the tracking process. In a separate case study, the algorithm was implemented over an even longer 65-mile freeway section and demonstrated that the proposed algorithm is capable of providing valuable insights into truck travel patterns and industrial affiliation to yield a comprehensive truck activity data source.  相似文献   

9.
Macroscopic fundamental diagram (MFD) describes the macro relationship between a network vehicle density and a network space mean flow, without requiring the mastery of complex origin to destination data. Thus, MFD provides an opportunity for the macro control of urban road network. However, most of the existing MFD control methods ignore the active role of traffic guidance in solving congestion problems. This study presents a traffic guidance–perimeter control coupled (TGPCC) method to improve the performance of macroscopic traffic networks. The method considers the optimal cumulative volume of a network as the goal and establishes a programming function according to the network equilibrium rule of traffic flow amongst multiple MFD sub-regions, which regards the minimum delay of network, as the objective. The Logit model for the compliance rate of driver route guidance is established by the stated preference survey. Moreover, the perimeter control (PC) method is proposed for adjusting the phase split of intersections. Finally, three schemes, namely, the TGPCC, PC and the method without PC and guidance are tested on a network with four well-defined MFD sub-regions. Results show that the TGPCC addresses the issue of congestion and decreases the total delay accordingly.  相似文献   

10.
The Macroscopic Fundamental Diagram (MFD) has been recognized as a powerful framework to develop network-wide control strategies. Recently, the concept has been extended to the three-dimensional MFD, used to investigate traffic dynamics of multi-modal urban cities, where different transport modes compete for, and share the limited road infrastructure. In most cases, the macroscopic traffic variables are estimated using either loop detector data (LDD) or floating car data (FCD). Taking into account that none of these data sources might be available, in this study we propose novel estimation methods for the space-mean speed of cars based on: (i) the automatic vehicle location (AVL) data of public transport where no FCD is available; and (ii) the fused FCD and AVL data sources where both are available, but FCD is not complete. Both methods account for the network configuration layout and the configuration of the public transport system. The first method allows one to derive either uni-modal or bi-modal macroscopic fundamental relationships, even in the extreme cases where no LDD nor FCD exist. The second method does not require a priori knowledge about FCD penetration rates and can significantly improve the estimation accuracy of the macroscopic fundamental relationships. Using empirical data from the city of Zurich, we demonstrate the applicability and validate the accuracy of the proposed methods in real-life traffic scenarios, providing a cross-comparison with the existing estimation methods. Such empirical comparison is, to the best of our knowledge, the first of its kind. The findings show that the proposed AVL-based estimation method can provide a good approximation of the average speed of cars at the network level. On the other hand, by fusing the FCD and AVL data, especially in case of sparse FCD, it is possible to obtain a more representative outcome regarding the performance of multi-modal traffic.  相似文献   

11.
This paper validates the prediction model embedded in a model predictive controller (MPC) of variable speed limits (VSLs). The MPC controller was designed based on an extended discrete first-order model with a triangular fundamental diagram. In our previous work, the extended discrete first-order model was designed to reproduce the capacity drop and the propagation of jam waves, and it was validated with reasonable accuracy without the presence of VSLs. As VSLs influence traffic dynamics, the dynamics including VSLs needs to be validated, before it can be applied as a prediction model in MPC. For conceptual illustrations, we use two synthetic examples to show how the model reproduces the key mechanisms of VSLs that are applied by existing VSL control approaches. Furthermore, the model is calibrated by use of real traffic data from Dutch freeway A12, where the field test of a speed limit control algorithm (SPECIALIST) was conducted. In the calibration, the original model is extended by using a quadrangular fundamental diagram which keeps the linear feature of the model and represents traffic states at the under-critical branch more accurately. The resulting model is validated using various traffic data sets. The accuracy of the model is compared with a second-order traffic flow model. The performance of two models is comparable: both models reproduce accurate results matching with real data. Flow errors of the calibration and validation are around 10%. The extended discrete first-order model-based MPC controller has been demonstrated to resolve freeway jam waves efficiently by synthetic cases. It has a higher computation speed comparing to the second-order model-based MPC.  相似文献   

12.
In this paper, a novel mesoscopic multilane model is proposed to enable simultaneous simulation of mandatory and discretionary lane-changing behaviors to realistically capture multilane traffic dynamics. The model considers lane specific fundamental diagrams to simulate dynamic heterogeneous lane flow distributions on expressways. Moreover, different priority levels are identified according to different lane-changing motivations and the corresponding levels of urgency. Then, an algorithm is proposed to estimate the dynamic mandatory and discretionary lane-changing demands. Finally, the lane flow propagation is defined by the reaction law of the demand–supply functions, which can be regarded as an extension of the Incremental-Transfer and/or Priority Incremental-Transfer principles. The proposed mesoscopic multilane cell transmission model is calibrated and validated on a complex weaving section of the State Route 241 freeway in Orange County, California, showing both the positive and negative impact of lane changing maneuvers, e.g., balancing effect and capacity drop, respectively. Moreover, the empirical study verifies that the model requires no additional data other than the cell transmission model does. Thus, the proposed model can be deployed as a simple simulation tool for accessing dynamic mesoscopic multilane traffic state from data available to most management centers, and also the potential application in predicting the impact of traffic incident or lane control strategy.  相似文献   

13.
Abstract

Under Intelligent Transportation Systems (ITS), real-time operations of traffic management measures depend on long-term planning results, such as the origin–destination (OD) trip distribution; however, results from current planning procedures are unable to provide fundamental data for dynamic analysis. In order to capture dynamic traffic characteristics, transportation planning models should play an important role to integrate basic data with real-time traffic management and control. In this paper, a heuristic algorithm is proposed to establish the linkage between daily OD trips and dynamic traffic assignment (DTA) procedures; thus results from transportation planning projects, in terms of daily OD trips, can be extended to estimate time-dependent OD trips. Field data from Taiwan are collected and applied in the calibration and validation processes. Dynamic Network Assignment-Simulation Model for Advanced Road Telematics (DYNASMART-P), a simulation-based DTA model, is applied to generate time-dependent flows. The results from the validation process show high agreement between actual flows from vehicle detectors (VDs) and simulated flows from DYNAMSART-P.  相似文献   

14.
Systematic lane changes can seriously deteriorate traffic safety and efficiency inside lane-drop, merge, and other bottleneck areas. In our previous studies (Jin, 2010a, Jin, 2010b), a phenomenological model of lane-changing traffic flow was proposed, calibrated, and analyzed based on a new concept of lane-changing intensity. In this study, we further consider weaving and non-weaving vehicles as two commodities and develop a multi-commodity, behavioral Lighthill–Whitham–Richards (LWR) model of lane-changing traffic flow. Based on a macroscopic model of lane-changing behaviors, we derive a fundamental diagram with parameters determined by car-following and lane-changing characteristics as well as road geometry and traffic composition. We further calibrate and validate fundamental diagrams corresponding to a triangular car-following fundamental diagram with NGSIM data. We introduce an entropy condition for the multi-commodity LWR model and solve the Riemann problem inside a homogeneous lane-changing area. From the Riemann solutions, we derive a flux function in terms of traffic demand and supply. Then we apply the model to study lane-changing traffic dynamics inside a lane-drop area and show that the smoothing effect of HOV lanes is consistent with observations in existing studies. The new theory of lane-changing traffic flow can be readily incorporated into Cell Transmission Model, and this study could lead to better strategies for mitigating bottleneck effects of lane-changing traffic flow.  相似文献   

15.
Traffic breakdown is one of the most important empirical phenomena in traffic flow theory. Unfortunately, it cannot be simulated by many traffic flow models. In order to clarify its mechanism, the new brake light cellular automaton model has been proposed. Comparing with previous brake light models, three different aspects have been considered: (i) drivers tend to take large decelerations if the time gap is smaller than the safe time gap and the leading vehicle’s brake light is on; (ii) the brake light rule is set according to the reality; (iii) the randomization rule is put forward before the acceleration rule to weaken the impact of brake light on driving behaviors. Analyses show that the new model can explain the mechanism of traffic breakdown and the failures of other brake light models. Simulations confirm that all empirical features of traffic breakdown are successfully reproduced. At last, brake light models are calibrated and validated by the I-80 empirical data provided by NGSIM. Results show that the performance of the new model is the best and models in the three-phase theory are not necessarily better than models in the fundamental diagram approach and vice versa, at least for the brake light models.  相似文献   

16.
To connect microscopic driving behaviors with the macro-correspondence (i.e., the fundamental diagram), this study proposes a flexible traffic stream model, which is derived from a novel car-following model under steady-state conditions. Its four driving behavior-related parameters, i.e., reaction time, calmness parameter, speed- and spacing-related sensitivities, have an apparent effect in shaping the fundamental diagram. Its boundary conditions and homogenous case are also analyzed in detail and compared with other two models (i.e., Longitudinal Control Model and Intelligent Driver Model). Especially, these model formulations and properties under Lagrangian coordinates provide a new perspective to revisit the traffic flow and complement with those under Eulerian coordinate. One calibration methodology that incorporates the monkey algorithm with dynamic adaptation is employed to calibrate this model, based on real-field data from a wide range of locations. Results show that this model exhibits the well flexibility to fit these traffic data and performs better than other nine models. Finally, a concrete example of transportation application is designed, in which the impact of three critical parameters on vehicle trajectories and shock waves with three representations (i.e., respectively defined in x-t, n-t and x-n coordinates) is tested, and macro- and micro-solutions on shock waves well agree with each other. In summary, this traffic stream model with the advantages of flexibility and efficiency has the good potential in level of service analysis and transportation planning.  相似文献   

17.
18.
This paper reports on real data testing of a real-time freeway traffic state estimator, with a particular focus on its adaptive capabilities. The pursued general approach to the real-time adaptive estimation of complete traffic state in freeway stretches or networks is based on stochastic macroscopic traffic flow modeling and extended Kalman filtering. One major innovative feature of the traffic state estimator is the online joint estimation of important model parameters (free speed, critical density, and capacity) and traffic flow variables (flows, mean speeds, and densities), which leads to three significant advantages of the estimator: (1) avoidance of prior model calibration; (2) automatic adaptation to changing external conditions (e.g. weather and lighting conditions, traffic composition, control measures); (3) enabling of incident alarms. These three advantages are demonstrated via suitable real data testing. The achieved testing results are satisfactory and promising for subsequent applications.  相似文献   

19.
Despite the availability of large empirical data sets and the long history of traffic modeling, the theory of traffic congestion on freeways is still highly controversial. In this contribution, we compare Kerner’s three-phase traffic theory with the phase diagram approach for traffic models with a fundamental diagram. We discuss the inconsistent use of the term “traffic phase” and show that patterns demanded by three-phase traffic theory can be reproduced with simple two-phase models, if the model parameters are suitably specified and factors characteristic for real traffic flows are considered, such as effects of noise or heterogeneity or the actual freeway design (e.g. combinations of off- and on-ramps). Conversely, we demonstrate that models created to reproduce three-phase traffic theory create similar spatiotemporal traffic states and associated phase diagrams, no matter whether the parameters imply a fundamental diagram in equilibrium or non-unique flow-density relationships. In conclusion, there are different ways of reproducing the empirical stylized facts of spatiotemporal congestion patterns summarized in this contribution, and it appears possible to overcome the controversy by a more precise definition of the scientific terms and a more careful comparison of models and data, considering effects of the measurement process and the right level of detail in the traffic model used.  相似文献   

20.
This paper presents the methodology and results from a study to extract empirical microscopic vehicular interactions from a probe vehicle instrumented with sensors to monitor the ambient vehicles as it traverses a 28 mi long freeway corridor. The contributions of this paper are two fold: first, the general method and approach to seek a cost-effective balance between automation and manual data reduction that transcends the specific application. Second, the resulting empirical data set is intended to help advance traffic flow theory in general and car following models in particular. Generally the collection of empirical microscopic vehicle interaction data is either too computationally intensive or labor intensive. Historically automatic data extraction does not provide the precision necessary to advance traffic flow theory, while the labor demands of manual data extraction have limited past efforts to small scales. Key to the present study is striking the right balance between automatic and manual processing. Recognizing that any empirical microscopic data for traffic flow theory has to be manually validated anyway, the present study uses a “pretty good” automated processing algorithm followed by detailed manual cleanup using an efficient user interface to rapidly process the data. The study spans roughly two hours of data collected on a freeway during the afternoon peak of a typical weekday that includes recurring congestion. The corresponding data are being made available to the research community to help advance traffic flow theory in general and car following models in particular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号