首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Abstract

This paper analyzes urban multimodal transportation systems in an aggregated way. To describe the aggregate behavior of traffic in cities, use is made of an idea that is now receiving some attention: the macroscopic fundamental diagram (MFD). We demonstrate through simulation how the MFD can be used to monitor and control a real network, in this case a portion of San Francisco, using readily available input data. We then show how different modes interact on the same network and discuss how these interactions might be incorporated into an MFD for multimodal networks. The work unveils two main results: first, it confirms recent results showing that restricting access to a city's congested areas can improve mobility for all travelers, including those who endure the restrictions; and second, that dedicating street space to collective transport modes can improve accessibility for all modes, even those from which space is taken away.  相似文献   

2.
Recent studies have demonstrated that Macroscopic Fundamental Diagram (MFD), which provides an aggregated model of urban traffic dynamics linking network production and density, offers a new generation of real-time traffic management strategies to improve the network performance. However, the effect of route choice behavior on MFD modeling in case of heterogeneous urban networks is still unexplored. The paper advances in this direction by firstly extending two MFD-based traffic models with different granularity of vehicle accumulation state and route choice behavior aggregation. This configuration enables us to address limited traffic state observability and to scrutinize implications of drivers’ route choice in MFD modeling. We consider a city that is partitioned in a small number of large-size regions (aggregated model) where each region consists of medium-size sub-regions (more detailed model) exhibiting a well-defined MFD. This paper proposes a route guidance advisory control system based on the aggregated model as a large-scale traffic management strategy that utilizes aggregated traffic states while sub-regional information is partially known. In addition, we investigate the effect of equilibrium conditions (i.e. user equilibrium and system optimum) on the overall network performance, in particular MFD functions.  相似文献   

3.
Real traffic data and simulation analysis reveal that for some urban networks a well-defined Macroscopic Fundamental Diagram (MFD) exists, which provides a unimodal and low-scatter relationship between the network vehicle density and outflow. Recent studies demonstrate that link density heterogeneity plays a significant role in the shape and scatter level of MFD and can cause hysteresis loops that influence the network performance. Evidently, a more homogeneous network in terms of link density can result in higher network outflow, which implies a network performance improvement. In this article, we introduce two aggregated models, region- and subregion-based MFDs, to study the dynamics of heterogeneity and how they can affect the accuracy scatter and hysteresis of a multi-subregion MFD model. We also introduce a hierarchical perimeter flow control problem by integrating the MFD heterogeneous modeling. The perimeter flow controllers operate on the border between urban regions, and manipulate the percentages of flows that transfer between the regions such that the network delay is minimized and the distribution of congestion is more homogeneous. The first level of the hierarchical control problem can be solved by a model predictive control approach, where the prediction model is the aggregated parsimonious region-based MFD and the plant (reality) is formulated by the subregion-based MFDs, which is a more detailed model. At the lower level, a feedback controller of the hierarchical structure, tries to maximize the outflow of critical regions, by increasing their homogeneity. With inputs that can be observed with existing monitoring techniques and without the need for detailed traffic state information, the proposed framework succeeds to increase network flows and decrease the hysteresis loop of the MFD. Comparison with existing perimeter controllers without considering the more advanced heterogeneity modeling of MFD highlights the importance of such approach for traffic modeling and control.  相似文献   

4.
Recent research has studied the existence and the properties of a macroscopic fundamental diagram (MFD) for large urban networks. The MFD should not be universally expected as high scatter or hysteresis might appear for some type of networks, like heterogeneous networks or freeways. In this paper, we investigate if aggregated relationships can describe the performance of urban bi-modal networks with buses and cars sharing the same road infrastructure and identify how this performance is influenced by the interactions between modes and the effect of bus stops. Based on simulation data, we develop a three-dimensional vehicle MFD (3D-vMFD) relating the accumulation of cars and buses, and the total circulating vehicle flow in the network. This relation experiences low scatter and can be approximated by an exponential-family function. We also propose a parsimonious model to estimate a three-dimensional passenger MFD (3D-pMFD), which provides a different perspective of the flow characteristics in bi-modal networks, by considering that buses carry more passengers. We also show that a constant Bus–Car Unit (BCU) equivalent value cannot describe the influence of buses in the system as congestion develops. We then integrate a partitioning algorithm to cluster the network into a small number of regions with similar mode composition and level of congestion. Our results show that partitioning unveils important traffic properties of flow heterogeneity in the studied network. Interactions between buses and cars are different in the partitioned regions due to higher density of buses. Building on these results, various traffic management strategies in bi-modal multi-region urban networks can then be integrated, such as redistribution of urban space among different modes, perimeter signal control with preferential treatment of buses and bus priority.  相似文献   

5.
Macroscopic fundamental diagrams (MFD) of traffic for some networks have been shown to have similar shape to those for single links. They have erroneously been used to help estimate the level of travel in congested networks. We argue that supply curves, which track vehicles in their passage through congested networks, are needed for this purpose, and that they differ from the performance curves generated from MFD. We use a microsimulation model, DRACULA and two networks, one synthesizing the network for Cambridge, England, and one of the city of York, England, to explore the nature of performance curves and supply curves under differing patterns of demand.We show that supply curves differ from performance curves once the onset of congestion is reached, and that the incorrect use of performance curves to estimate demand can thus seriously underestimate traffic levels, the costs of congestion, and the value of congestion relief measures. We also show that network aggregated supply curves are sensitive to the temporal distribution of demand and, potentially, to the spatial distribution of demand. The shape of the supply curve also differs between origin–destination movements within a given network.We argue that supply curves for higher levels of demand cannot be observed in normal traffic conditions, and specify ways in which they can be determined from microsimulation and, potentially, by extrapolating observed data. We discuss the implications of these findings for conventional modelling of network management policies, and for these policies themselves.  相似文献   

6.
Currently most optimization methods for urban transport networks (i) are suited for networks with simplified dynamics that are far from real-sized networks or (ii) apply decentralized control, which is not appropriate for heterogeneously loaded networks or (iii) investigate good-quality solutions through micro-simulation models and scenario analysis, which make the problem intractable in real time. In principle, traffic management decisions for different sub-systems of a transport network (urban, freeway) are controlled by operational rules that are network specific and independent from one traffic authority to another. In this paper, the macroscopic traffic modeling and control of a large-scale mixed transportation network consisting of a freeway and an urban network is tackled. The urban network is partitioned into two regions, each one with a well-defined Macroscopic Fundamental Diagram (MFD), i.e. a unimodal and low-scatter relationship between region density and outflow. The freeway is regarded as one alternative commuting route which has one on-ramp and one off-ramp within each urban region. The urban and freeway flow dynamics are formulated with the tool of MFD and asymmetric cell transmission model, respectively. Perimeter controllers on the border of the urban regions operating to manipulate the perimeter interflow between the two regions, and controllers at the on-ramps for ramp metering are considered to control the flow distribution in the mixed network. The optimal traffic control problem is solved by a Model Predictive Control (MPC) approach in order to minimize total delay in the entire network. Several control policies with different levels of urban-freeway control coordination are introduced and tested to scrutinize the characteristics of the proposed controllers. Numerical results demonstrate how different levels of coordination improve the performance once compared with independent control for freeway and urban network. The approach presented in this paper can be extended to implement efficient real-world control strategies for large-scale mixed traffic networks.  相似文献   

7.
Macroscopic fundamental diagram (MFD) describes the macro relationship between a network vehicle density and a network space mean flow, without requiring the mastery of complex origin to destination data. Thus, MFD provides an opportunity for the macro control of urban road network. However, most of the existing MFD control methods ignore the active role of traffic guidance in solving congestion problems. This study presents a traffic guidance–perimeter control coupled (TGPCC) method to improve the performance of macroscopic traffic networks. The method considers the optimal cumulative volume of a network as the goal and establishes a programming function according to the network equilibrium rule of traffic flow amongst multiple MFD sub-regions, which regards the minimum delay of network, as the objective. The Logit model for the compliance rate of driver route guidance is established by the stated preference survey. Moreover, the perimeter control (PC) method is proposed for adjusting the phase split of intersections. Finally, three schemes, namely, the TGPCC, PC and the method without PC and guidance are tested on a network with four well-defined MFD sub-regions. Results show that the TGPCC addresses the issue of congestion and decreases the total delay accordingly.  相似文献   

8.
Pricing is considered an effective management policy to reduce traffic congestion in transportation networks. In this paper we combine a macroscopic model of traffic congestion in urban networks with an agent-based simulator to study congestion pricing schemes. The macroscopic model, which has been tested with real data in previous studies, represents an accurate and robust approach to model the dynamics of congestion. The agent-based simulator can reproduce the complexity of travel behavior in terms of travelers’ choices and heterogeneity. This integrated approach is superior to traditional pricing schemes. On one hand, traffic simulators (including car-following, lane-changing and route choice models) consider travel behavior, i.e. departure time choice, inelastic to the level of congestion. On the other hand, most congestion pricing models utilize supply models insensitive to demand fluctuations and non-stationary conditions. This is not consistent with the physics of traffic and the dynamics of congestion. Furthermore, works that integrate the above features in pricing models are assuming deterministic and homogeneous population characteristics. In this paper, we first demonstrate by case studies in Zurich urban road network, that the output of a agent-based simulator is consistent with the physics of traffic flow dynamics, as defined by a Macroscopic Fundamental Diagram (MFD). We then develop and apply a dynamic cordon-based congestion pricing scheme, in which tolls are controlled by an MFD. And we investigate the effectiveness of the proposed pricing scheme. Results show that by applying such a congestion pricing, (i) the savings of travel time at both aggregated and disaggregated level outweigh the costs of tolling, (ii) the congestion inside the cordon area is eased while no extra congestion is generated in the neighbor area outside the cordon, (iii) tolling has stronger impact on leisure-related activities than on work-related activities, as fewer agents who perform work-related activities changed their time plans. Future work can apply the same methodology to other network-based pricing schemes, such as area-based or distance-traveled-based pricing. Equity issues can be investigated more carefully, if provided with data such as income of agents. Value-of-time-dependent pricing schemes then can also be determined.  相似文献   

9.
Abstract

Microscopic traffic simulators are the most advanced tools for representing the movement of vehicles on a transport network. However, the energy spent in traffic microsimulation has been mainly oriented to cars. Little interest has been devoted to more sophisticated models for simulating transit systems. Commercial software has some options to incorporate the operation of transit vehicles, but they are insufficient to properly consider a real public transport system. This paper develops an Application Programming Interface, called MIcroscopic Simulation of TRANSIT (MISTRANSIT), using the commercial microsimulator PARAllel MICroscopic Simulation. MISTRANSIT makes advances in three ways: public transport vehicles can have new characteristics; passengers are incorporated and traced as individual objects; and specific models represent the interaction between passengers and vehicles at stops. This paper presents the modelling approach as well as various experiments to illustrate the feasibility of MISTRANSIT for studying policy operations of transit systems.  相似文献   

10.
A field experiment in Yokohama (Japan) revealed that a macroscopic fundamental diagram (MFD) linking space-mean flow, density and speed exists on a large urban area. It was observed that when the highly scattered plots of flow vs. density from individual fixed detectors were aggregated the scatter nearly disappeared and points grouped along a well defined curve. Despite these and other recent findings for the existence of well-defined MFDs for urban areas, these MFDs should not be universally expected. In this paper we investigate what are the properties that a network should satisfy, so that an MFD with low scatter exists. We show that the spatial distribution of vehicle density in the network is one of the key components that affect the scatter of an MFD and its shape. We also propose an analytical derivation of the spatial distribution of congestion that considers correlation between adjacent links. We investigate the scatter of an MFD in terms of errors in the probability density function of spatial link occupancy and errors of individual links’ fundamental diagram (FD). Later, using real data from detectors for an urban arterial and a freeway network we validate the proposed derivations and we show that an MFD is not well defined in freeway networks as hysteresis effects are present. The datasets in this paper consist of flow and occupancy measures from 500 fixed sensors in the Yokohama downtown area in Japan and 600 loop detectors in the Twin Cities Metropolitan Area Freeway network in Minnesota, USA.  相似文献   

11.
Recently there has been much interest in understanding macroscopic fundamental diagrams of stationary road networks. However, there lacks a systematic method to define and solve stationary states in a road network with complex junctions. In this study we propose a kinematic wave approach to defining, analyzing, and simulating static and dynamic traffic characteristics in a network of two ring roads connected by a 2 × 2 junction, which can be either an uninterrupted interchange or a signalized intersection. This study is enabled by recently developed macroscopic junction models of general junctions. With a junction model based on fair merging and first-in-first-out diverging rules, we first define and solve stationary states and then derive the macroscopic fundamental diagram (MFD) of a stationary uninterrupted network. We conclude that the flow-density relationship of the uninterrupted double-ring network is not unique for high average network densities (i.e., when one ring becomes congested) and unveil the existence of infinitely many stationary states that can arise with a zero-speed shockwave. From simulation results with a corresponding Cell Transmission Model, we verify that all stationary states in the MFD are stable and can be reached, but show that randomness in the retaining ratio of each ring drives the network to more symmetric traffic patterns and higher flow-rates. Furthermore we model a signalized intersection as two alternate diverge junctions and demonstrate that the signalized double-ring network can reach asymptotically periodic traffic patterns, which are therefore defined as “stationary” states in signalized networks. With simulations we show that the flow-density relation is well defined in such “stationary” states, and asymptotic traffic patterns can be impacted by signal cycle lengths and retaining ratios. But compared with uninterrupted interchanges, signalized intersections lead to more asymmetric traffic patterns, lower flow-rates, and even gridlocks when the average density is higher than half of the jam density. The results are consistent between this study and existing studies, but the network kinematic wave model, with appropriate junction models, is mathematically tractable and physically meaningful. It has offered a more complete picture regarding the number and type of stationary states, their stability, and MFD in freeway and signalized networks.  相似文献   

12.
Abstract

Many equilibrium models and algorithms based on homogeneous motorized traffic have been devised to model urban transport systems in developed countries, but they are inadequate when it comes to represent mixed-traffic urban transport systems, including automobiles, transit, bicycles, and pedestrians, in developing countries such as China or India. In these cases, traffic flow on a road segment is an aggregated result of travellers' combined mode/route choices and corresponding interactions. Therefore, a special assignment model and algorithm are needed for modeling these distinct behaviors. In this article, the structure of a mixed-traffic urban transport system is analyzed and then expanded and represented using a hierarchical network model based on graph theory. Based on the analysis of travelers' combined mode/route choices, generalized travel cost functions and link impedance functions for different modes are formulated, where the interferences between different modes on the same road segments are taken into account. Due to the ‘asymmetric’ nature of these functions, a variational inequality model is proposed to represent the equilibrium assignment problem in a mixed-traffic urban transport system. The corresponding solution algorithm is also presented. Finally, a numerical example is provided to illustrate the practicality of the proposed model and algorithm.  相似文献   

13.
The field of research that has recently come to the fore is the perimeter control, which aims to control traffic demand for a large urban area prior to controlling internal flow inside the area. Such control concept needs to be tested by simulations, hence, it is necessary to develop a model that can appropriately estimate the network-wide flow dynamics. In this paper, agent-based network transmission model (ANTM) is proposed for describing the aggregated flow dynamics over an urban area of multiple large-scale networks. The proposed model is the combination of the cell transmission model (CTM), macroscopic fundamental diagram (MFD), and agent concept. The CTM-based simulation is adopted for the simplicity considering the computation requirements for real-time feasibility. The MFD concept is applied for representing the network properties, and a new approach is taken particularly for estimating network outflow affected by both demand patterns and boundary capacity. The agent concept is applied for representing drivers’ travel behaviors. The model is compared with microscopic simulations and shows reasonable accuracy for large areas. In addition, various travel direction choice behaviors are applicable to this model. Various perimeter control policies are applicable as well, thus, the proposed model can be a useful tool for testing various control methods, in terms of reducing the congestion in urban areas.  相似文献   

14.
A promising framework that describes traffic conditions in urban networks is the macroscopic fundamental diagram (MFD), relating average flow and average density in a relatively homogeneous urban network. It has been shown that the MFD can be used, for example, for traffic access control. However, an implementation requires an accurate estimation of the MFD with the available data sources.Most scientific literature has considered the estimation of MFDs based on either loop detector data (LDD) or floating car data (FCD). In this paper, however, we propose a methodology for estimating the MFD based on both data sources simultaneously. To that end, we have defined a fusion algorithm that separates the urban network into two sub-networks, one with loop detectors and one without. The LDD and the FCD are then fused taking into account the accuracy and network coverage of each data type. Simulations of an abstract grid network and the network of the city of Zurich show that the fusion algorithm always reduces the estimation error significantly with respect to an estimation where only one data source is used. This holds true, even when we account for the fact that the probe penetration rate of FCD needs to be estimated with loop detectors, hence it might also include some errors depending on the number of loop detectors, especially when probe vehicles are not homogeneously distributed within the network.  相似文献   

15.
Perimeter control based on the Macroscopic Fundamental Diagram (MFD) is widely developed for alleviating or postponing congestion in a protected region. Recent studies reveal that traffic conditions might not be improved if the perimeter control strategies are applied to unstable systems where high demand generates heavy and heterogeneously distributed traffic congestion. Therefore, considering stability of the targeted traffic system is essential, for the sake of developing a feasible and then optimal control strategy. This paper sheds light on this direction. It integrates a stability characterization algorithm of MFD system equations into the Model Predictive Control (MPC) scheme, and features respectively an upper and a lower bound of the feasible control inputs, to guarantee system stability. Firstly, the dynamics of traffic heterogeneity and its effect on the MFD are analyzed, using real data from Guangzhou in China. Piecewise affine functions of average flow are proposed to capture traffic heterogeneity in both regional and subregional MFDs. Secondly, stability of a three-state two-region system is investigated via stable equilibrium and surface boundaries analysis. Finally, a three-layer hierarchical control strategy is introduced for the studied two-region heterogeneous urban networks. The first layer of the controller calculates the stable surface boundaries for the given traffic demands and then determines the bounds of control input (split rate). An MPC approach in the second layer is used to solve an optimization problem with two objectives of minimizing total network delay and maximizing network throughput. Heterogeneity among the subregions is minimized in the last layer by implementing simultaneously a subregional perimeter flow control and an internal flow control. The effectiveness and stability of the proposed control approach are verified by comparison with four existing perimeter control strategies.  相似文献   

16.
Using a stochastic cellular automaton model for urban traffic flow, we study and compare Macroscopic Fundamental Diagrams (MFDs) of arterial road networks governed by different types of adaptive traffic signal systems, under various boundary conditions. In particular, we simulate realistic signal systems that include signal linking and adaptive cycle times, and compare their performance against a highly adaptive system of self-organizing traffic signals which is designed to uniformly distribute the network density. We find that for networks with time-independent boundary conditions, well-defined stationary MFDs are observed, whose shape depends on the particular signal system used, and also on the level of heterogeneity in the system. We find that the spatial heterogeneity of both density and flow provide important indicators of network performance. We also study networks with time-dependent boundary conditions, containing morning and afternoon peaks. In this case, intricate hysteresis loops are observed in the MFDs which are strongly correlated with the density heterogeneity. Our results show that the MFD of the self-organizing traffic signals lies above the MFD for the realistic systems, suggesting that by adaptively homogenizing the network density, overall better performance and higher capacity can be achieved.  相似文献   

17.
Well-defined relationships between flow and density averaged spatially across urban traffic networks, more commonly known as Macroscopic Fundamental Diagrams (MFDs), have been recently verified to exist in reality. Researchers have proposed using MFDs to monitor the status of urban traffic networks and to inform the design of network-wide traffic control strategies. However, it is also well known that empirical MFDs are not easy to estimate in practice due to difficulties in obtaining the requisite data needed to construct them. Recent works have devised ways to estimate a network’s MFD using limited trajectory data that can be obtained from GPS-equipped mobile probe vehicles. These methods assume that the market penetration level of mobile probe vehicles is uniform across the entire set of OD pairs in the network; however, in reality the probe vehicle market penetration rate varies regionally within a network. When this variation is combined with the imbalance of probe trip lengths and travel times, the compound effects will further complicate the estimation of the MFD.To overcome this deficit, we propose a method to estimate a network’s MFD using mobile probe data when the market penetration rates are not necessarily the same across an entire network. This method relies on the determination of appropriate average probe penetration rates, which are weighted harmonic means using individual probe vehicle travel times and distances as the weights. The accuracy of this method is tested using synthetic data generated in the INTEGRATION micro-simulation environment by comparing the estimated MFDs to the ground truth MFD obtained using a 100% market penetration of probe vehicles. The results show that the weighted harmonic mean probe penetration rates outperform simple (arithmetic) average probe penetration rates, as expected. This especially holds true as the imbalance of demand and penetration level increases. Furthermore, as the probe penetration rates are generally not known, an algorithm to estimate the probe penetration rates of regional OD pairs is proposed. This algorithm links count data from sporadic fixed detectors in the network to information from probe vehicles that pass the detectors. The simulation results indicate that the proposed algorithm is very effective. Since the data needed to apply this algorithm are readily available and easy to collect, the proposed algorithm is practically feasible and offers a better approach for the estimation of the MFD using mobile probe data, which are becoming increasingly available in urban environments.  相似文献   

18.
Abstract

A large number of cellular automata (CA) based traffic flow models have been proposed in the recent past. Often, the speed‐flow‐density relations obtained from these models are only presented and their apparent similarities with observed relations are cited as reasons for considering them as valid models of traffic flow. Hardly any attempt has been made to comprehensively study the microscopic properties (like time‐headway distribution, acceleration noise, stability in car‐following situations, etc.) of the simulated streams. This article proposes a framework for such evaluations. The article also presents the results from the evaluation of six existing CA‐based models. The results show that none of them satisfy all the properties. A new model proposed by the authors to overcome these shortcomings is briefly presented, and results supporting the improved performance of the proposed model are also provided.  相似文献   

19.
Recent experimental work has shown that the average flow and average density within certain urban networks are related by a unique, reproducible curve known as the Macroscopic Fundamental Diagram (MFD). For networks consisting of a single route this MFD can be predicted analytically; but when the networks consist of multiple overlapping routes experience shows that the flows observed in congestion for a given density are less than those one would predict if the routes were homogeneously congested and did not overlap. These types of networks also tend to jam at densities that are only a fraction of their routes’ average jam density.This paper provides an explanation for these phenomena. It shows that, even for perfectly homogeneous networks with spatially uniform travel patterns, symmetric equilibrium patterns with equal flows and densities across all links are unstable if the average network density is sufficiently high. Instead, the stable equilibrium patterns are asymmetric. For this reason the networks jam at lower densities and exhibit lower flows than one would predict if traffic was evenly distributed.Analysis of small idealized networks that can be treated as simple dynamical systems shows that these networks undergo a bifurcation at a network-specific critical density such that for lower densities the MFDs have predictably high flows and are univalued, and for higher densities the order breaks down. Microsimulations show that this bifurcation also manifests itself in large symmetric networks. In this case though, the bifurcation is more pernicious: once the network density exceeds the critical value, the stable state is one of complete gridlock with zero flow. It is therefore important to ensure in real-world applications that a network’s density never be allowed to approach this critical value.Fortunately, analysis shows that the bifurcation’s critical density increases considerably if some of the drivers choose their routes adaptively in response to traffic conditions. So far, for networks with adaptive drivers, bifurcations have only been observed in simulations, but not (yet) in real life. This could be because real drivers are more adaptive than simulated drivers and/or because the observed real networks were not sufficiently congested.  相似文献   

20.
There has been rapid growth in interest in real-time transport strategies over the last decade, ranging from automated highway systems and responsive traffic signal control to incident management and driver information systems. The complexity of these strategies, in terms of the spatial and temporal interactions within the transport system, has led to a parallel growth in the application of traffic microsimulation models for the evaluation and design of such measures, as a remedy to the limitations faced by conventional static, macroscopic approaches. However, while this naturally addresses the immediate impacts of the measure, a difficulty that remains is the question of how the secondary impacts, specifically the effect on route and departure time choice of subsequent trips, may be handled in a consistent manner within a microsimulation framework.The paper describes a modelling approach to road network traffic, in which the emphasis is on the integrated microsimulation of individual trip-makers’ decisions and individual vehicle movements across the network. To achieve this it represents directly individual drivers’ choices and experiences as they evolve from day-to-day, combined with a detailed within-day traffic simulation model of the space–time trajectories of individual vehicles according to car-following and lane-changing rules and intersection regulations. It therefore models both day-to-day and within-day variability in both demand and supply conditions, and so, we believe, is particularly suited for the realistic modelling of real-time strategies such as those listed above. The full model specification is given, along with details of its algorithmic implementation. A number of representative numerical applications are presented, including: sensitivity studies of the impact of day-to-day variability; an application to the evaluation of alternative signal control policies; and the evaluation of the introduction of bus-only lanes in a sub-network of Leeds. Our experience demonstrates that this modelling framework is computationally feasible as a method for providing a fully internally consistent, microscopic, dynamic assignment, incorporating both within- and between-day demand and supply dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号