首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 349 毫秒
1.
The use of probe vehicles to provide estimates of link travel times has been suggested as a means of obtaining travel times within signalized networks for use in advanced traveler information systems. Previous research has shown that bias in arrival time distributions of probe vehicles will lead to a systematic bias in the sample estimate of the mean. This paper proposes a methodology for reducing the effect of this bias. The method, based on stratified sampling techniques, requires that vehicle count data be obtained from an in-road loop detector or other traffic surveillance method. The effectiveness of the methodology is illustrated using simulation results for a single intersection approach and for an arterial corridor. The results for the single intersection approach indicate a correlation (R2) between the biased estimate and the population mean of 0.61, and an improved correlation between the proposed estimation method and the population mean of 0.81. Application of the proposed method to the arterial corridor resulted in a reduction in the mean travel time error of approximately 50%, further indicating that the proposed estimation method provides improved accuracy over the typical method of computing the arithmetic mean of the probe reports.  相似文献   

2.
Modern traffic signal control systems require reliable estimates of turning flows in real time to formulate effective control actions, and accommodate disturbances in traffic demand without deteriorating the system performance. The more accurate the estimation is, the more effective the control plan is. Most of the previous research works assumed that a full set of detector counts is available and employed the least-squares methods to produce unbiased estimates of the turning movement proportions. However, in practice, such a dense detector configuration is expensive to install and maintain. Also, the least-squares estimates are not feasible when the travel time between inflows and outflows is significant, or when intervening traffic conditions change the travel time. This study proposes a nonlinear least-square (NLS) approach and a quasi maximum likelihood (QML) approach to recursively estimate turning movement proportions in a network of intersections where only a partial set of detector counts are available. Using large population approximation technique, a class of nonlinear, discrete-time traffic flow models are transformed into a linear state–space model tractable for on-line applications. The quality of estimates is demonstrated by implementing the proposed algorithms with simulation and real data. As a comparison, the NLS estimator shows less bias but with higher variance than the QML estimator. The QML estimator outperforms the NLS estimator in terms of total mean square error, due to an increase in bias being traded for a decrease in variance.  相似文献   

3.
The travel decisions made by road users are more affected by the traffic conditions when they travel than the current conditions. Thus, accurate prediction of traffic parameters for giving reliable information about the future state of traffic conditions is very important. Mainly, this is an essential component of many advanced traveller information systems coming under the intelligent transportation systems umbrella. In India, the automated traffic data collection is in the beginning stage, with many of the cities still struggling with database generation and processing, and hence, a less‐data‐demanding approach will be attractive for such applications, if it is not going to reduce the prediction accuracy to a great extent. The present study explores this area and tries to answer this question using automated data collected from field. A data‐driven technique, namely, artificial neural networks (ANN), which is shown to be a good tool for prediction problems, is taken as an example for data‐driven approach. Grey model, GM(1,1), which is also reported as a good prediction tool, is selected as the less‐data‐demanding approach. Volume, classified volume, average speed and classified speed at a particular location were selected for the prediction. The results showed comparable performance by both the methods. However, ANN required around seven times data compared with GM for comparable performance. Thus, considering the comparatively lesser input requirement of GM, it can be considered over ANN in situations where the historic database is limited. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.

This paper presents an artificial neural network (ANN) based method for estimating route travel times between individual locations in an urban traffic network. Fast and accurate estimation of route travel times is required by the vehicle routing and scheduling process involved in many fleet vehicle operation systems such as dial‐a‐ride paratransit, school bus, and private delivery services. The methodology developed in this paper assumes that route travel times are time‐dependent and stochastic and their means and standard deviations need to be estimated. Three feed‐forward neural networks are developed to model the travel time behaviour during different time periods of the day‐the AM peak, the PM peak, and the off‐peak. These models are subsequently trained and tested using data simulated on the road network for the City of Edmonton, Alberta. A comparison of the ANN model with a traditional distance‐based model and a shortest path algorithm is then presented. The practical implication of the ANN method is subsequently demonstrated within a dial‐a‐ride paratransit vehicle routing and scheduling problem. The computational results show that the ANN‐based route travel time estimation model is appropriate, with respect to accuracy and speed, for use in real applications.  相似文献   

5.
Oversized vehicles, such as trucks, significantly contribute to traffic delays on freeways. Heterogeneous traffic populations, that is, those consisting of multiple vehicles types, can exhibit more complicated travel behaviors in the operating speed and performance, depending on the traffic volume as well as the proportions of vehicle types. In order to estimate the component travel time functions for heterogeneous traffic flows on a freeway, this study develops a microscopic traffic‐simulation based four‐step method. A piecewise continuous function is proposed for each vehicle type and its parameters are estimated using the traffic data generated by a microscopic traffic simulation model. The illustrated experiments based on VISSIM model indicate that (i) in addition to traffic volume, traffic composition has significant influence on the travel time of vehicles and (ii) the respective estimations for travel time of heterogeneous flows could greatly improve their estimation accuracy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Estimation of time-dependent arterial travel time is a challenging task because of the interrupted nature of urban traffic flows. Many research efforts have been devoted to this topic, but their successes are limited and most of them can only be used for offline purposes due to the limited availability of traffic data from signalized intersections. In this paper, we describe a real-time arterial data collection and archival system developed at the University of Minnesota, followed by an innovative algorithm for time-dependent arterial travel time estimation using the archived traffic data. The data collection system simultaneously collects high-resolution “event-based” traffic data including every vehicle actuations over loop detector and every signal phase changes from multiple intersections. Using the “event-based” data, we estimate time-dependent travel time along an arterial by tracing a virtual probe vehicle. At each time step, the virtual probe has three possible maneuvers: acceleration, deceleration and no-speed-change. The maneuver decision is determined by its own status and surrounding traffic conditions, which can be estimated based on the availability of traffic data at intersections. An interesting property of the proposed model is that travel time estimation errors can be self-corrected, because the trajectory differences between a virtual probe vehicle and a real one can be reduced when both vehicles meet a red signal phase and/or a vehicle queue. Field studies at a 11-intersection arterial corridor along France Avenue in Minneapolis, MN, demonstrate that the proposed model can generate accurate time-dependent travel times under various traffic conditions.  相似文献   

7.
Urban traffic congestion is one of the most severe problems of everyday life in Metropolitan areas. In an effort to deal with this problem, intelligent transportation systems (ITS) technologies have concentrated in recent years on dealing with urban congestion. One of the most critical aspects of ITS success is the provision of accurate real-time information and short-term predictions of traffic parameters such as traffic volumes, travel speeds and occupancies. The present paper concentrates on developing flexible and explicitly multivariate time-series state space models using core urban area loop detector data. Using 3-min volume measurements from urban arterial streets near downtown Athens, models were developed that feed on data from upstream detectors to improve on the predictions of downstream locations. The results clearly suggest that different model specifications are appropriate for different time periods of the day. Further, it also appears that the use of multivariate state space models improves on the prediction accuracy over univariate time series ones.  相似文献   

8.
Recent research has investigated various means of measuring link travel times on freeways. This search has been motivated in part by the fact that travel time is considered to be more informative to users than local velocity measurements at a detector station. But direct travel time measurement requires the correlation of vehicle observations at multiple locations, which in turn requires new communications infrastructure and/or new detector hardware. This paper presents a method for estimating link travel time using data from an individual dual loop detector, without requiring any new hardware. The estimation technique exploits basic traffic flow theory to extrapolate local conditions to an extended link. In the process of estimating travel times, the algorithm also estimates vehicle trajectories. The work demonstrates that the travel time estimates are very good provided there are no sources of delay, such as an incident, within a link.  相似文献   

9.
Although various innovative traffic sensing technologies have been widely employed, incomplete sensor data is one of the most major problems to significantly degrade traffic data quality and integrity. In this study, a hybrid approach integrating the Fuzzy C-Means (FCM)-based imputation method with the Genetic Algorithm (GA) is develop for missing traffic volume data estimation based on inductance loop detector outputs. By utilizing the weekly similarity among data, the conventional vector-based data structure is firstly transformed into the matrix-based data pattern. Then, the GA is applied to optimize the membership functions and centroids in the FCM model. The experimental tests are conducted to verify the effectiveness of the proposed approach. The traffic volume data collected at different temporal scales were used as the testing dataset, and three different indicators, including root mean square error, correlation coefficient, and relative accuracy, are utilized to quantify the imputation performance compared with some conventional methods (Historical method, Double Exponential Smoothing, and Autoregressive Integrated Moving Average model). The results show the proposed approach outperforms the conventional methods under prevailing traffic conditions.  相似文献   

10.
Driving behavior models that capture drivers’ tactical maneuvering decisions in different traffic conditions are essential to microscopic traffic simulation systems. This paper focuses on a parameter that has a great impact on road users’ aggressive overtaking maneuvers and directly affects lane-changing models (an integral part of microscopic traffic simulation models), namely, speed deviation. The objective of this research is to investigate the impacts of speed deviation in terms of performance measures (delay time, network mean speed, and travel time duration) and the number of lane-change maneuvers using the Aimsun traffic simulator. Following calibration of the model for a section of urban highway in Tehran, this paper explores the sensitivity of lane-changing maneuvers during different speed deviations by conducting two types of test. Simulation results show that, by decreasing speed deviation, the number of lane changes reduces remarkably and so network safety increases, thus reducing travel time due to an increase in network mean speed.  相似文献   

11.
This study focuses on how to use multiple data sources, including loop detector counts, AVI Bluetooth travel time readings and GPS location samples, to estimate macroscopic traffic states on a homogeneous freeway segment. With a generalized least square estimation framework, this research constructs a number of linear equations that map the traffic measurements as functions of cumulative vehicle counts on both ends of a traffic segment. We extend Newell’s method to solve a stochastic three-detector problem, where the mean and variance estimates of cell-based density and flow can be analytically derived through a multinomial probit model and an innovative use of Clark’s approximation method. An information measure is further introduced to quantify the value of heterogeneous traffic measurements for improving traffic state estimation on a freeway segment.  相似文献   

12.
Travel time is an important performance measure for transportation systems, and dissemination of travel time information can help travelers make reliable travel decisions such as route choice or departure time. Since the traffic data collected in real time reflects the past or current conditions on the roadway, a predictive travel time methodology should be used to obtain the information to be disseminated. However, an important part of the literature either uses instantaneous travel time assumption, and sums the travel time of roadway segments at the starting time of the trip, or uses statistical forecasting algorithms to predict the future travel time. This study benefits from the available traffic flow fundamentals (e.g. shockwave analysis and bottleneck identification), and makes use of both historical and real time traffic information to provide travel time prediction. The methodological framework of this approach sequentially includes a bottleneck identification algorithm, clustering of traffic data in traffic regimes with similar characteristics, development of stochastic congestion maps for clustered data and an online congestion search algorithm, which combines historical data analysis and real-time data to predict experienced travel times at the starting time of the trip. The experimental results based on the loop detector data on Californian freeways indicate that the proposed method provides promising travel time predictions under varying traffic conditions.  相似文献   

13.
This paper presents an off‐line forecasting system for short‐term travel time forecasting. These forecasts are based on the historical traffic count data provided by detectors installed on Annual Traffic Census (ATC) stations in Hong Kong. A traffic flow simulator (TFS) is developed for short‐term travel time forecasting (in terms of offline forecasting), in which the variation of perceived travel time error and the fluctuations of origin‐destination (O‐D) demand are considered explicitly. On the basis of prior O‐D demand and partial updated detector data, the TFS can estimate the link travel times and flows for the whole network together with their variances and covariances. The short‐term travel time forecasting by O‐D pair can also be assessed and the O‐D matrix can be updated simultaneously. The application of the proposed off‐line forecasting system is illustrated by a numerical example in Hong Kong.  相似文献   

14.
The purpose of this paper is to examine the performance of a new operational system for measuring traffic speeds and travel times which is based on information from a cellular phone service provider. Cellular measurements are compared with those obtained by dual magnetic loop detectors. The comparison uses data for a busy 14 km freeway with 10 interchanges, in both directions, during January–March of 2005. The dataset contains 1 284 587 valid loop detector speed measurements and 440 331 valid measurements from the cellular system, each measurement referring to a 5 min interval. During one week in this period, 25 floating car measurements were conducted as additional comparison observations. The analyses include visual, graphical, and statistical techniques; focusing in particular on comparisons of speed patterns in the time–space domain. The main finding is that there is a good match between the two measurement methods, indicating that the cellular phone-based system can be useful for various practical applications such as advanced traveler information systems and evaluating system performance for modeling and planning.  相似文献   

15.
In the expressway network, detectors are installed on the links for detecting the travel time information while the predicted travel time can be provided by the route guidance system (RGS). The speed detector density can be determined to influence flow distributions in such a way that the precision of the travel time information and the social cost of the speed detectors are optimized, provided that each driver chooses the minimum perceived travel time path in response to the predicted travel time information. In this paper, a bilevel programming model is proposed for the network with travel time information provided by the RGS. The lower-level problem is a probit-based traffic assignment model, while the upper-level problem is to determine the speed detector density that minimizes the measured travel time error variance as well as the social cost of the speed detectors. The sensitivity analysis based algorithm is proposed for the bilevel programming problem. Numerical examples are provided to illustrate the applications of the proposed model and of the solution algorithm.  相似文献   

16.
This paper develops an efficient probabilistic model for estimating route travel time variability, incorporating factors of time‐of‐day, inclement weather, and traffic incidents. Estimating the route travel time distribution from historical link travel time data is challenging owing to the interactions among upstream and downstream links. Upon creating conditional probability function for each link travel time, we applied Monte Carlo simulation to estimate the total travel time from origin to destination. A numerical example of three alternative routes in the City of Buffalo shows several implications. The study found that weather conditions, except for snow, incur minor impact on off‐peak and weekend travel time, whereas peak travel times suffer great variations under different weather conditions. On top of that, inclement weather exacerbates route travel time reliability, even when mean travel time increases moderately. The computation time of the proposed model is linearly correlated to the number of links in a route. Therefore, this model can be used to obtain all the origin to destination travel time distributions in an urban region. Further, this study also validates the well‐known near‐linear relation between the standard deviation of travel time per unit distance and the corresponding mean value under different weather conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
With the recent increase in the deployment of ITS technologies in urban areas throughout the world, traffic management centers have the ability to obtain and archive large amounts of data on the traffic system. These data can be used to estimate current conditions and predict future conditions on the roadway network. A general solution methodology for identifying the optimal aggregation interval sizes for four scenarios is proposed in this article: (1) link travel time estimation, (2) corridor/route travel time estimation, (3) link travel time forecasting, and (4) corridor/route travel time forecasting. The methodology explicitly considers traffic dynamics and frequency of observations. A formulation based on mean square error (MSE) is developed for each of the scenarios and interpreted from a traffic flow perspective. The methodology for estimating the optimal aggregation size is based on (1) the tradeoff between the estimated mean square error of prediction and the variance of the predictor, (2) the differences between estimation and forecasting, and (3) the direct consideration of the correlation between link travel time for corridor/route estimation and forecasting. The proposed methods are demonstrated using travel time data from Houston, Texas, that were collected as part of the automatic vehicle identification (AVI) system of the Houston Transtar system. It was found that the optimal aggregation size is a function of the application and traffic condition.
Changho ChoiEmail:
  相似文献   

18.
This work examines the impact of heavy vehicle movements on measured traffic characteristics in detail. Although the number of heavy vehicles within the traffic stream is only a small percentage, their impact is prominent. Heavy vehicles impose physical and psychological effects on surrounding traffic flow because of their length and size (physical) and acceleration/deceleration (operational) characteristics. The objective of this work is to investigate the differences in traffic characteristics in the vicinity of heavy vehicles and passenger cars. The analysis focuses on heavy traffic conditions (level of service E) using a trajectory data of highway I‐80 in California. The results show that larger front and rear space gaps exist for heavy vehicles compared with passenger cars. This may be because of the limitations in manoeuvrability of heavy vehicles and the safety concerns of the rear vehicle drivers, respectively. In addition, heavy vehicle drivers mainly keep a constant speed and do not change their speed frequently. This work also examines the impact of heavy vehicles on their surrounding traffic in terms of average travel time and number of lane changing manoeuvres using Advanced Interactive Microscopic Simulator for Urban and Non‐Urban Networks (AIMSUN) microscopic traffic simulation package. According to the results, the average travel time increases when proportion of heavy vehicles rises in each lane. To reflect the impact of heavy vehicles on average travel time, a term related to heavy vehicle percentage is introduced into two different travel time equations, Bureau of Public Roads and Akçelik's travel time equations. The results show that using an exclusive term for heavy vehicles can better estimate the travel times for more than 10%. Finally, number of passenger car lane changing manoeuvres per lane will be more frequent when more heavy vehicles exist in that lane. The influence of heavy vehicles on the number of passenger car lane changing is intensified in higher traffic densities and higher percentage of heavy vehicles. Large numbers of lane changing manoeuvres can increase the number of traffic accidents and potentially reduce traffic safety. The results show an increase of 5% in the likelihood of accidents, when percentage of heavy vehicles increases to 30% of total traffic. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
In probe-based traffic monitoring systems, traffic conditions can be inferred based on the position data of a set of periodically polled probe vehicles. In such systems, the two consecutive polled positions do not necessarily correspond to the end points of individual links. Obtaining estimates of travel time at the individual link level requires the total traversal time (which is equal to the polling interval duration) be decomposed. This paper presents an algorithm for solving the problem of decomposing the traversal time to times taken to traverse individual road segments on the route. The proposed algorithm assumes minimal information about the network, namely network topography (i.e. links and nodes) and the free flow speed of each link. Unlike existing deterministic methods, the proposed solution algorithm defines a likelihood function that is maximized to solve for the most likely travel time for each road segment on the traversed route. The proposed scheme is evaluated using simulated data and compared to a benchmark deterministic method. The evaluation results suggest that the proposed method outperforms the bench mark method and on average improves the accuracy of the estimated link travel times by up to 90%.  相似文献   

20.
Length-based vehicle classification is an important topic in traffic engineering, because estimation of traffic speed from single loop detectors usually requires the knowledge of vehicle length. In this paper, we present an algorithm that can classify vehicles passing by a loop detector into two categories: long vehicles and regular cars. The proposed algorithm takes advantage of event-based loop detector data that contains every vehicle detector actuation and de-actuation “event”, therefore time gaps between consecutive vehicles and detector occupation time for each vehicle can be easily derived. The proposed algorithm is based on an intuitive observation that, for a vehicle platoon, longer vehicles in the platoon will have relatively longer detector occupation time. Therefore, we can identify longer vehicles by examining the changes of occupation time in a vehicle platoon. The method was tested using the event-based data collected from Trunk Highway 55 in Minnesota, which is a high speed arterial corridor controlled by semi-actuated coordinated traffic signals. The result shows that the proposed method can correctly classify most of the vehicles passing by a single loop detector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号