首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
武汉长江二桥主桥两端边墩处承托相邻单腿刚构的5m悬臂段,经观测变形较大,需在边墩墩顶处增设6根刚性梁对悬臂段进行加固。刚性梁安装施工利用既有混凝土梁作为提升支点,采用"整体提升、分步滑移到位"的安装方案。针对此方案设计刚性梁提升(滑移)操作平台,以及相关施工工艺等整套施工技术。该技术的成功实施为此项目创造了良好的社会效益和经济效益。  相似文献   

2.
重庆市曾家岩嘉陵江大桥为刚性悬索加劲连续钢桁梁公轨两用桥,跨径布置为(135+270+135)m,主桁采用2片桁架结构,整体受力。为保证大桥钢桁梁的顺利合龙,对总体架设方案和主要受力阶段进行了研究。确定了主桁架设采用悬臂散拼工艺,采用从主墩到桥台,刚性悬索与主梁杆件同步的架设方式。结合该桥的工程特点,建立全桥板梁混合模型,采用无应力状态法进行计算,加劲悬索合龙的临时索最大索力为12 400kN,满足规范要求;主桁中跨合龙采用了张拉临时钢绞线斜拉索、预偏安装以及边跨梁端顶升的措施,其最大顶升力为4 200kN、梁端最大预偏量为68.5cm,通过常规千斤顶实施。主桁最大单悬臂的临时索最大索力为8 850kN,加劲悬索、上弦杆、墩顶立柱的最大正应力分别为152MPa、162MPa、134MPa,满足规范要求。  相似文献   

3.
湖州北刘屋桥为墩梁半刚性连接的钢-混组合梁整体桥,桥长38.2m,桥宽12.14m,跨径布置为(0.5+12+0.6+12+0.6+12+0.5)m。该桥主梁采用耐候工字钢和现浇混凝土桥面板组成的钢-混组合梁;在主梁与盖梁之间设置橡胶衬垫以适应主梁的弯曲变形;在盖梁中设置外包橡胶套的钢棒,并与端横梁现浇成整体,形成墩梁半刚接并取消墩上支座;采用整体式桥台去除伸缩缝,实现全桥无伸缩缝和支座。采用MIDAS Civil软件建立该桥有限元模型,分析其受力性能,结果表明:恒载作用下,采用整体式桥台,能更有效地发挥混凝土桥面板和钢梁各自的材料性能;桥墩位置无论采用墩梁铰接还是墩梁半刚接,均不影响整体桥主梁应力分布;温度荷载作用下,墩梁半刚接整体桥与墩梁铰接整体桥在墩顶位置处的应力分布有所不同。  相似文献   

4.
对T梁与墩固结的连续刚构桥来说,其墩顶固结的节点是关键的传力部件,基于一座7×30 m预应力连续刚构T梁高墩桥,建立墩梁固结节点的ANSYS有限元模型,计算和分析了其在第一工况最大弯矩和第二工况最小弯矩边界荷载下的应力分布、应力传递规律及应力集中现象等情况.分析表明:两种工况作用下,横桥向和竖桥向的拉压应力均不大,全桥整体刚度分配均匀,整体受力性能良好,T梁、墩梁固结区及盖梁受力处于正常的状态,设计是合理可行的,但在墩梁固结处局部位置存在应力集中现象,应引起设计方注意.  相似文献   

5.
展丙来  郗磊  姚晓飞  来猛刚  陈浩  孙宁 《公路》2021,66(12):207-211
大悬臂PC盖梁分3个节段预制,设牛腿缝拼装,可有效控制吊装重量和提高施工效率;但牛腿缝节段预制拼装盖梁的抗弯抗剪性能研究成果鲜见报道.针对节段拼装大悬臂PC盖梁承载性能,确定了试件尺寸、加载方式、测试项目等内容,开展了2组盖梁缩尺模型的抗弯、抗剪性能试验,对比分析了牛腿缝拼装试件和现浇整体试件在极限承载能力、破坏形式、破坏规律、关键部位荷载~应变关系、盖梁梁端荷载挠度方面的特性.结果 表明:牛腿缝拼装试件较现浇整体试件的抗弯、抗剪极限承载力下降明显;牛腿缝拼装试件主要为局部破坏导致整体破坏形态;建议进一步对节段拼装盖梁拼接面处薄弱区域开展研究,以改善牛腿缝拼装盖梁整体弯剪极限承载力.  相似文献   

6.
花瓶形桥墩由于造型美观,节约空间而得到广泛应用;然而,实施大跨预制箱梁的分幅架设施工,荷载工况变化大,桥墩受力复杂。因此,对花瓶墩进行准确的架设过程空间受力分析至关重要。该文通过对某高速公路工程大悬臂花瓶墩建立实体有限元模型,针对结构异形的特点,考虑4种不利工况下不同传力路径应力分布状况,研究非对称大跨预制箱梁分幅架设全过程花瓶墩的复杂空间受力状态。结果表明:花瓶墩在各种不利施工工况下整体受力表现为受压状态,横桥向受力良好;然而在移梁侧局部应力较大,特别是架桥机中支腿所在桥墩的临时支座间墩顶混凝土存在纵向拉应力超过混凝土标准抗拉强度的风险,可能产生受拉裂缝。  相似文献   

7.
V形墩刚构桥桥墩与梁体呈角度相交,交汇处传力方式复杂,应选取合理的构造形式以改善该区域的受力状态。文中通过建立墩梁固结区域实体有限元模型,施加单向内力或典型组合作用,以研究该区域的合理构造形式及其主要受力特征。结果表明,整体式横梁有助于降低附近梁体顶板应力水平,内力传递流畅;0号梁段顶板纵向正应力分布相较底板更不均匀,远离横梁位置中腹板顶应力水平较边腹板顶大;可通过在整体式横梁内部增设横、竖向预应力钢束,以控制其整体主应力水平。  相似文献   

8.
针对中等跨径的钢桁-砼组合连续刚构桥,通常可采用整体吊装的施工方法[1]。对比分析了现有的墩梁固结形式,结果表明现有形式不利于整体吊装施工,因此提出一种新型的墩梁联结构造,并通过有限元方法,将不同的墩梁联结形式在施工阶段及成桥阶段的力学行为进行了对比分析。结果表明,新型墩梁联结构造有利于钢桁-砼组合连续刚构桥的整体吊装施工,且能有效地改善墩顶处钢桁构件及桥墩的受力性能,具有较好的可行性和安全性。  相似文献   

9.
平潭海峡公铁两用大桥通航孔桥钢梁标准梁段最重1 250t,80m梁重1 360t、88m梁重1 550t。平潭海域风大、浪高、大风频繁,根据现场施工条件,结合桥跨布置及现有设备,平潭海峡公铁两用大桥钢梁采用3 600t浮吊吊装及1 100t架梁吊机整节段悬臂拼装。钢梁浮吊架设时,在钢梁落梁节点下方设置落梁垫块和橡胶垫进行缓冲减震,以确保钢梁受力安全;钢梁快速吊装时采用了由纵(横)向撑杆、无接头绳圈和特殊钢梁吊耳组成的柔性吊具,降低了吊装中的安全风险;墩旁支架设计时充分考虑了钢梁的落梁偏差及冲击荷载的影响,并对柱头、柱脚等受力关键点进行了局部加强;利用桥塔墩固定支座和纵向阻尼器连接销座进行塔梁临时纵向限位,以抵抗钢梁悬臂架设期间的最大水平反力;通过设置简易抗风牛腿及利用主桥支座自身横向承载力,以抵抗钢梁悬臂架设期间的台风影响。  相似文献   

10.
组合结构箱梁桥连续顶推施工技术研究   总被引:1,自引:0,他引:1  
组合结构以其优异的力学性能和对施工具有的良好适应性将在未来桥梁建设中占有越来越重要的地位,组合箱梁常常采用顶推法施工。杭州九堡大桥南引桥采用大悬臂的宽箱轻型槽形钢梁与预应力混凝土桥面板的组合箱梁结构,箱宽31.5m,悬臂超过8m,11跨一联,长910m,该结构体系是国内最宽的单箱组合梁。施工采用独创的"步履式"顶推施工法,工艺新颖:多点连续顶推,85m跨不设临时墩,顶推过程梁体属整体刚性平移,如此大跨径的顶推施工在国内尚属首次。本文研究了九堡大桥大跨长联钢槽梁的顶推施工工艺,并对顶推过程中结构关键受力点:钢槽梁与移位器的接触边界进行了计算分析,确定了合适的接触宽度。实践表明九堡大桥的顶推施工是非常成功的。  相似文献   

11.
《世界桥梁》2021,49(4)
广州明珠湾大桥为(96+164+436+164+96+60) m三主桁双层桥面中承式钢桁拱桥。大桥采用"拱梁同步"大悬臂拼装架设,由于主桥施工处于深水区,无法搭设临时墩支撑,因此在顺桥向主墩两侧设置墩旁托架临时支撑主墩钢桁梁初始节间。墩旁托架支撑在既有承台墩身上,由上托架、下托架及上、下托架之间的钢梁姿态调控装置组成。托架设计为稳定的三脚架结构,以克服施工过程中主墩支座两侧由于受力不平衡而产生的倾覆力矩;下托架钢管内填充自密实微膨胀混凝土,并在水平钢管内设置预应力钢绞线,以提高托架整体刚度,抵抗钢梁拼装产生的水平力;调控装置精确调整钢桁梁初始节间纵、横向及高程位置,操作简单、易控。整体结构受力计算结果表明:在最不利工况作用下,墩旁托架受力状态满足施工要求且有足够的安全度。对墩旁托架预埋件、下托架、上托架和钢梁姿态调控装置进行安装,钢梁在拼装完墩顶2个节间后,对钢梁中线和高程进行1次精确调整,确保了钢梁悬臂架设支撑安全及线形满足设计要求。  相似文献   

12.
S12梅龙高速公路K24+615深度3号桥2014年通车运营后,在车辆动荷载及梁体本身纵向下滑力的作用下,第一联(0~#~5~#墩)左幅梁体向梅州方向纵向位移5~7cm,右幅梁体向梅州方向纵向位移3~5cm,影响行车安全。通过对第一联偏移梁体整体顶升和对支座进行改造后,同步顶推纠偏使梁体恢复到原设计位置。  相似文献   

13.
大小练岛水道桥为双塔钢桁混合梁斜拉桥结构,边跨、辅助跨及主塔墩顶钢梁均采用浮吊架设,其余主跨钢梁采用架梁吊机悬臂架设。浮吊最大一吊钢梁总质量3123 t。主墩墩旁托架不仅承受钢梁自重,还需承受浮吊吊装钢梁时的冲击荷载,且海上拼装托架难度较大。通过现场试验确定钢梁落梁时冲击系数,设置对拉钢绞线抵抗钢梁竖向荷载对支架产生的水平力及台风荷载产生的水平扭矩。托架采用工厂制造成整体,再利用大型浮吊整体安装的施工技术。  相似文献   

14.
大跨长联钢桁梁顶推关键技术   总被引:6,自引:2,他引:4  
郑州黄河公铁两用桥主桥分2联布置,第1联为(120+5×168+120)m的六塔连续钢桁结合梁斜拉桥,第2联为5×120 m的连续钢桁结合梁桥,钢桁梁架设采用多点连续同步顶推施工技术。采用MIDAS Civil软件进行钢桁梁顶推施工计算,根据墩顶反力和摩擦力,每墩配2台350 t的连续千斤顶。该桥大跨长联钢桁梁顶推距离为1 080 m,顶推总重量27 000 t,边桁主动顶推,中桁被动移动,采用计算机多点连续动态控制技术。导梁结构与主体钢桁梁通过连接节点由斜桁变直桁。在墩旁设滑道,通过滑道前端千斤顶进行滑块体系转换,实现桁架结构受力要求。  相似文献   

15.
高墩大跨度曲线桥悬臂施工阶段非线性分析   总被引:7,自引:1,他引:7  
以高墩大跨径曲线桥为研究对象,以非线性稳定理论为基础,利用有限元法对其在悬臂施工阶段荷载状态进行计算分析;通过对不同曲率半径、墩高、系梁个数的非线性计算,对荷载比例系数和悬臂端计算结果进行比较分析,总结出高墩大跨径曲线刚构桥曲率半径、墩高、系梁个数与荷载系数、悬臂端位移的关系,为设计及施工提供科学依据。  相似文献   

16.
东莞东江大桥钢桁梁合龙技术   总被引:1,自引:1,他引:0  
东莞东江大桥主桥为双层刚性悬索三桁加劲连续钢桁梁公路桥,跨径布置为(112+208+112)m,三桁整体受力。大桥分2次合龙(平弦合龙和加劲弦合龙),为解决合龙位置杆件偏差问题,结合该桥的工程特点,提出利用墩顶临时支承起顶装置、温差法及主墩墩顶临时纵向顶推装置的解决措施。采用结构分析软件,建立全桥有限元计算分析模型,通过对合龙工况的分析,确定了起顶位置及起顶高度,分别实现大桥平弦及加劲弦合龙。实践证明,大桥顺利合龙且各项指标均满足设计要求。  相似文献   

17.
沪苏通长江公铁大桥为主跨1 092 m的双塔五跨连续钢桁梁斜拉桥,是世界上首次采用"整节段三桁结构,多点主动对接合龙"的工程。它采用"先中跨、后边跨"的合龙顺序,利用边墩及辅助墩顶预留的三向调节措施、辅助墩顶已有的大吨位起顶措施及主塔墩旁的悬臂施工抗风牛腿等作为合龙口的辅助调整措施,通过监控计算及合龙口敏感性分析,为钢梁最终的顺利合龙制定了切实可行的方案。  相似文献   

18.
为了研究滑道荷载形式对临时墩受力的影响,以6×90m连续钢梁顶推为研究对象,采用有限元程序MIDAS2006建立临时墩仿真模型,并对其进行数值分析,结果表明,滑道荷载形式对临时墩最大应力大小及位置有较大影响;为改善临时墩在梯形荷载作用下的受力,提出了在临时墩顶部施加水平拉索并对水平拉索实施预张拉的改进措施,结果表明,索力P每增加10kN,临时墩最大应力σ3max减小0.47MPa。  相似文献   

19.
铜陵公铁两用长江大桥主桥为630m五跨连续钢桁梁斜拉桥,采用三主桁三索面结构型式。3片主桁均由全焊桁片拼装而成。通过对备选方案的研究和比选,铜陵岸钢梁架设采用"边跨全顶推法架设+中跨悬臂法架设"方案,无为岸钢梁架设采用"边跨部分拖拉法架设+中跨悬臂法架设"方案,中跨合龙采用"桁片整体合龙"方案。在4号桥塔墩设置顶推平台和顶推装置,将铜陵岸边跨和次边跨钢梁分段安装、分次顶推至全部就位,然后将中跨钢梁悬臂架设至合龙口;在2号墩前方设置安装平台、1号墩墩顶布置拖拉装置,将无为岸边跨和部分次边跨钢梁分段安装、分次拖拉至全部就位,然后将3号墩前后两侧钢梁双悬臂架设至边跨合龙,再将剩余中跨钢梁单悬臂架设至跨中合龙口;最后吊装合龙段桁片进行中跨合龙。  相似文献   

20.
以某一大跨径预应力连续梁桥为对象,通过MIDAS/Civil建立桥梁悬臂施工阶段以及成桥阶段的结构模型,分析桥梁不同工况和不同施工荷载下的位移云图和应力云图,获得桥梁变形特征和应力特征。研究结果表明:悬臂施工段,悬臂端自重横载作用和张拉预应力作用下产生最大累计位移由悬臂根部逐渐增大;由于最大位移相反,因此预应力累计位移能够较好的抵消恒载位移影响;悬臂阶段,主梁最大应力出现在墩梁固结处,主梁应力由墩体位置向合拢段逐渐减小,在合拢处取得最小值;成桥阶段主梁合拢段产生最大应力,由合拢区向墩梁固结处应力逐渐减小,在墩梁处取得最小应力,位移量由合拢处向左右两侧块逐渐增大;中跨合拢60 d后桥面铺装时,最大位移量出现在中跨合拢段;桥梁投运3 a后主梁整体位移表现出不确定性,各块均表现出不同程度的增大或减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号