首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
软弱围岩隧道管棚水平旋喷组合预加固变形规律   总被引:2,自引:0,他引:2  
为研究软弱围岩地层管棚水平旋喷桩组合结构的预加固效果,采用三维弹塑性有限元方法对比分析了单独使用管棚、单独使用旋喷桩、管棚与旋喷桩组合预加固及无加固4种工况下隧道结构体系的位移变化规律。结果表明:1)水平旋喷桩和管棚2种工法中,水平旋喷桩预加固工法控制拱顶下沉、拱脚收敛值和掌子面稳定性能力显著;2)管棚预加固工法控制地表沉降的能力较强;3)管棚和旋喷桩组合结构控制拱顶沉降和拱脚收敛,掌子面水平位移性能突出,管棚水平旋喷桩组合结构使地表沉降减小91.3%,拱顶沉降减小76.2%,拱脚收敛减小76.3%,其地表最大沉降值为2.7 mm,拱顶最大沉降值为25 mm,拱脚最大收敛值为4mm,最小收敛值为-9.4 mm,加固效果明显。  相似文献   

2.
刘建生 《公路》2023,(4):423-428
以江西安源隧道(双向六车道连拱式隧道)为研究背景,采用管棚注浆的预支护手段,通过现场监测和数值模拟软件研究连拱隧道在施工过程中围岩位移、应力和管棚支护的动态变化规律,并结合拱顶沉降、地表沉降以及周边收敛的现场监测数据进行数值模拟验证。研究表明:连拱隧道左侧主洞施工对围岩的扰动范围主要在左侧,对右侧主洞影响较小;左右主洞与中隔墙拱脚处存在拉应力集中,施工时需要注意拱脚位置的施工质量;由于隧道存在偏压效应,隧道浅埋侧管棚弯矩最大值大于深埋侧;靠近洞口处的管棚始终承受较大弯矩,施工时,要控制洞口处的管棚施工质量。  相似文献   

3.
泥岩隧道因开挖卸荷作用引起围岩较大变形,对施工质量控制和安全生产带来严重威胁。为探究泥岩隧道开挖卸荷后的变形特性规律,通过开展施工现场监测试验,获取隧道拱顶、拱肩和拱腰监控变形值,研究分析围岩随时间的变形效应。结果表明:泥岩隧道沉降值和水平收敛值分别随着监测时间的变化呈现出三阶段变化趋势,具体表现为快速增长阶段、缓慢增长阶段和趋于稳定阶段;隧道拱顶沉降值较拱肩和拱腰沉降值大,沉降值随着拱顶、拱肩和拱腰沉降速率的稳定而最终趋向于定值;隧道拱肩水平收敛值较拱腰水平收敛值大,隧道的水平收敛速率值最终趋于定值;隧道沉降和水平收敛的比值变化范围较小,两者具有较好的相关性。受偏压作用是引起泥岩隧道围岩左右侧的不均匀沉降的根本原因,隧道结构设计、选型及支护施作中应引起重视。研究结果可为类似泥岩隧道的修建与变形监测提供一定的参考依据。  相似文献   

4.
高地应力区软岩隧道地质条件复杂,使软岩隧道变形控制难度加大。以某一工程实例为对象,运用MIDAS/GTS软件建立了软岩公路隧道模型,分析了不同侧压力系数下对高地应力软岩隧道开挖变形的影响作用。研究结果表明:随着侧压力系数的增大,隧道围岩水平位移由向隧道外挤压变形转化为向隧道内收敛变形,K值在0.5~0.75时,存在一个水平位移零点,最终水平变形量为0;对于隧道竖向位移变形,当侧压力系数小于1时,隧道最大竖向位移出现在拱顶处。当侧压力系数大于1时,上拱变形加强,但整体依然表现沉降变形,隧道最大竖向位移出现由拱腰转移到拱间处。K值在1附近时,隧道水平变形和拱顶变形所形成的最终变形量相等,可根据现场对水平位移和拱顶位移间的位移关系来判定隧道围岩侧压系数的大致取值范围。  相似文献   

5.
为研究浅埋偏压小净距三洞并行隧道的合理开挖顺序、施工工法及明洞施工影响,基于甬舟公铁路中公路涨茨隧道与铁路洋山隧道并行段,建立三维偏压山体与三洞并行模型,对不同开挖顺序与工法下围岩、支护结构受力变形展开比选研究,并对明洞施工的作用效果及合适施作时机展开研究。(1)铁路隧道与公路左线拱底隆起区、与公路右线拱顶沉降区产生贯通,且公路隧道塑性区集中于近铁路隧道中下侧;隧道开挖导致自身洞周变形加速,相邻隧道拱顶、地表隆起,近侧拱腰扩张、对侧拱腰收敛。(2)公路左线拱顶、地表在相邻隧道施工时会出现隆起,且先开挖左线隆起时间最短,先开挖左线的工法中顺序3(公路左线-公路右线-铁路隧道)在围岩支护体系受力变形最优。(3)考虑施工速度及减小偏压隧道工法导致围岩扰动,提出三洞采用CD-二台阶-反向CD的新工法。该工法能进一步减小结构受力变形,并对铁路隧道拱腰收敛改善效果显著。(4)左线明洞施工回填土处未发生塑性破坏,且可以改善支护结构受力数值及不均匀(初支在左拱腰、二衬在右拱脚受力较大)的情况;左线明洞-左线暗洞-右线为最佳明洞施作时机,减小了支护体系的受力变形以及铁路隧道与右线的拱底隆起,并对右线左拱...  相似文献   

6.
铁路双线软岩隧道控制大变形施工工法比选   总被引:2,自引:0,他引:2       下载免费PDF全文
徐勇  刘仲仁  王维高  寇江 《隧道建设》2010,30(2):134-136
为解决双线软岩隧道施工中普遍存在沉降和收敛过大、初期支护变形侵限导致拆换拱的现象,通过介绍兰渝铁路两水隧道施工中应用的几种工法,根据围岩监控量测数据分析,从安全、进度和设备利用方面进行比选,得出大拱脚台阶法比较适合于双线软岩隧道的施工。  相似文献   

7.
昔格达组地层大断面隧道变形特征分析   总被引:1,自引:0,他引:1  
王志杰  许瑞宁  何能方 《隧道建设》2016,36(12):1412-1420
为掌握昔格达组地层大断面隧道变形特征,确保大断面隧道施工期间围岩的稳定性,以改建铁路成都至昆明线米易至攀枝花段桐梓林隧道为依托,采用数值模拟与现场多断面监测相结合的方法,研究在三台阶临时仰拱法施工中昔格达组地层大断面隧道变形的时空效应。研究结果表明: 昔格达组地层大断面隧道洞周围岩变形以竖向沉降为主;拱顶先行沉降与上台阶开挖引起的拱顶沉降之和占总沉降的41.3%,超前影响范围为1.3D;隧道开挖期间拱顶沉降和拱脚水平收敛主要受中台阶开挖的影响;隧道拱顶沉降随时间变化的预测公式为U=102.105·exp(-5.33/X);隧道拱脚水平收敛随时间变化的预测公式为L1=19.552·exp(-7.49/X);隧道墙腰水平收敛随时间变化的预测公式为L2=17.862·exp(-23.26/X)。  相似文献   

8.
杨永斌  王庆  王星  黄帅 《路基工程》2023,(4):137-142
针对浅埋软弱围岩隧道开挖施工的沉降变形问题,以翁多隧道为依托,结合现场监测数据研究了“三台阶+微桩锁脚”施工技术下隧道初期支护结构的受力及变形特征。结果表明:两种支护结构下随着施工开挖的不断推进,围岩和钢拱架应力变化规律相近,先急剧增加并达到峰值,然后呈缓慢下降趋势,并逐步趋于平缓;累计沉降量则呈缓慢增大趋势。隧道拱顶位置处应力最大,风险最高,常规锁脚锚杆支护拱顶处围岩压力、钢拱架应力分别为0.55、74.10 MPa,累计沉降量最大值为6.70 cm,微锁桩支护时围岩、钢拱架峰值应力分别增加0.55、23.50 MPa,累计沉降量减小了3.96 cm。可见,微型桩技术方案可有效改良浅埋软弱围岩隧道结构的变形与沉降值,控制隧道变形,避免隧道因大变形导致侵限换拱,降低了施工安全风险,具有一定的应用前景。  相似文献   

9.
针对黄土隧道围岩强度低、自承载力弱、开挖变形大的问题,基于数值模拟法对黄土隧道施工过程模拟仿真,得到隧道围岩开挖溶洞的位移变形特征和应力变化,并给出相应的隧道变形沉降控制措施。研究结果表明:隧道开挖过程中,掌子面上部围岩形成一个U形的整体沉降区,由隧道表面延伸到拱脚处,边界接近垂直。隧道开挖对围岩影响集中在隧道中线35 m范围,掌子面前方20 m内,其中在隧道中线20 m,掌子面前方6 m沉降值达到总沉降的24%~45%,沉降集中在掌子面至初支护封闭阶段。实际工程中,可通过加强拱脚强度、提高初期支护和超前支护、减少封闭距离来有效控制围岩沉降变形。  相似文献   

10.
针对软岩公路隧道施工中的超前管棚施作问题,采用双参数地基梁模型,分析了大断面浅埋软岩隧道超前管棚的受力机制,对比分析了工程中常用的Φ76和Φ108的2种超前管棚的支护效果,研究结果表明:①管棚的受力和变形主要集中在掌子面前4 m范围内,管棚的梁支撑作用效果明显,采用Φ108管棚比采用Φ76管棚的最大挠度减小约36%。②超前管棚将上部荷载传递到已开挖隧道初支结构及掌子面前方围岩,起到梁支撑的作用,从而提高掌子面围岩的稳定性,而采用Φ108管棚能承担更多的上部围岩压力,更好地控制围岩位移。应用上述管棚弹性地基梁模型,成功指导了云南大永高速公路大断面软岩公路隧道下穿既有公路工程,将Φ76管棚方案调整为Φ108管棚方案后,最大拱顶地表沉降值减少了38%,保障了整个下穿施工过程的安全顺利。  相似文献   

11.
高速公路软岩隧道复合支护机理的FLAC解析   总被引:12,自引:0,他引:12  
结合软弱围岩隧道工程地质和支护设计特点 ,应用有限差分方法 ( FLAC)模拟研究了软岩隧道受力变形特征和围岩收敛曲线 ,并分析了复合支护结构中一次支护和二次支护结构的作用机理及作用效果。研究结果表明 ,软岩隧道开挖和一次支护后围岩支护压力随拱顶位移增加而连续减小 ,预测的最大位移均发生在隧道拱顶。但是 ,在同样支护压力下 ,考虑软岩流变特征的收敛曲线的拱顶位移要大得多 ,必须及时设置二次支护。另外二次支护结构还将起到承受流变压力的作用  相似文献   

12.
《中外公路》2021,41(3):226-229
为了分析水平砂泥岩隧道锚杆支护效果,以段家坪隧道为例,通过数值模拟和现场监测,对隧道拱顶沉降、锚杆轴力和初期支护与围岩接触压力进行研究。结果表明:锚杆长度达到3 m,锚杆间距达到1.5 m后,继续增加锚杆长度和减少锚杆间距对于隧道拱顶沉降的控制作用不再明显;隧道拱部锚杆轴力较大,隧道拱腰和拱脚处锚杆受力较小;随着水平砂泥岩隧道围岩强度的降低,拱部锚杆轴力不断增大。围岩强度越低,锚杆能够更好发挥控制围岩变形的作用。  相似文献   

13.
为了解砂卵石地层隧道围岩和支护结构的应力应变特性,以青海循隆高速公伯峡隧道为依托,借助PFC3D离散元软件对公伯峡隧道穿越砂卵石地层进行三维模拟,重点研究以密排短管棚预支护为根本前提,以三台阶预留核心土为施工方法的砂卵石地层围岩和支护结构的应力应变特性,并与现场实测进行对比分析。研究结果表明: 隧道台阶开挖时,围岩应力集中范围逐渐从拱顶过渡到拱腰,直到拱脚,对应的塑性区范围不断扩大,且密排短管棚对塑性区的发展有一定的“遮拦效应”; 围岩横纵向变形规律一致,主要是向隧道临空面产生收敛变形,且密排短管棚形成的梁拱效应限制了掌子面前方位移发展; 2种方法得到的初期支护变形规律一致,均呈阶段性变化,拱顶下沉累计值大于周边收敛累计值,且两者的最终变形量均满足规范限值要求。  相似文献   

14.
以汕湛高速揭博段水墩隧道为工程背景,运用数值模拟计算的方法,建立上软下硬地层下爆破振动的有限元计算模型,对爆破荷载作用下上部初期支护和围岩的振动响应及空洞效应进行研究。结果表明: 1)掌子面下部基岩爆破施工的振动荷载主要通过支护结构传递给拱顶围岩,而掌子面上部前方围岩(未成洞区)和后方围岩(成洞区)振动分布并不对称,其中成洞区围岩的振动速度和振动范围远大于未成洞区,说明上软下硬地层隧道爆破振动存在空洞效应; 2)成洞区单向约束是造成振动加剧的根本原因,围岩振动的纵向最不利位置为掌子面后方约2 m处,径向为软硬交界结构面与隧道外轮廓的切点处; 3)振动方向以径向为主,即拱顶围岩振动以竖向振动为主,初期支护拱脚以水平振动为主; 4)距离掌子面1倍(洞径)范围的拱顶围岩及初期支护拱脚是控制爆破振动的关键部位。  相似文献   

15.
以国内某一在建软弱围岩隧道为研究对象,提出了一种基于软弱围岩隧道的管棚注浆超前支护。通过建立模型对管棚注浆超前支护在隧道围岩加固中的作用效果和影响因素进行了分析。研究结果表明:隧道围岩在自重作用下沿纵向产生最大初始位移量,而水平、竖直向的初始位移量相对较小;在隧道整体施工过程中,随着隧道施工步序的推进,锚杆拉应力在一个小范围波动,并未出现较大幅度的突增和下降,采用管棚注浆超前支护能够有效的控制隧道围岩的竖向位移量,提高了锚杆的均匀受力性,有效控制喷混层拱顶应力集中现象,优化了拱顶部的受力状态。但管棚注浆超前支护对超前核心土作用在掌子面的挤压变形控制效果较差;且由于管棚加固自重作用,增加了拱脚处受力。  相似文献   

16.
《公路》2017,(11)
针对隧道中先浇筑主洞衬砌结构后进行横洞开挖的施工工序中横洞施工对主洞衬砌结构形变破坏的影响,以某软岩隧道为工程依托,通过隧道衬砌应力监测、初支结构形变监测以及横洞施工时主洞衬砌结构形变破坏的监测,对深埋软岩隧道横洞施工对主洞衬砌结构形变破坏影响进行了研究与分析。研究表明,隧道交叉段围岩形变量较大,围岩形变速率较大,最大水平收敛位移达到537mm。最大拱顶下沉值达到346.1mm,围岩形变速率平均值达到9.93mm/d;依托工程隧道衬砌为主要受力结构,受力随着时间呈逐渐增大趋势。局部位置处形成应力集中区,应力值达到1.13 MPa和1.03 MPa。衬砌混凝土在左拱脚与右拱腰位置处呈现受压状态,最大压应力值为0.889 MPa。拱顶呈受拉状态,最大拉应力值为6.45 MPa。深埋软岩隧道中的横洞施工对主洞衬砌结构的形变破损有着较为严重的影响,影响范围达到140m。在此软岩隧道中不宜采用先浇筑主洞衬砌结构后对横洞进行爆破开挖的施工工法。  相似文献   

17.
采用非线性数值软件ANSYS对公路软岩隧道初期支护结构内力进行数值分析,研究公路软岩隧道开挖过程中初期支护的力学行为,为施工提供动态设计依据。分析结果表明,软岩隧道在系统锚杆支护作用下,开挖各阶段初期支护结构各部位轴力值增大,弯矩和剪力值都减小,但增大值和减小值变化范围都非常小;支护结构弯矩较大值主要集中在拱脚,最大值出现在右侧拱脚区域;轴力的最大值出现在左侧边墙和左右拱脚部位;剪力最大值出现在左侧拱脚处。  相似文献   

18.
漳龙高速公路扩建隧道围岩力学特性三维有限元分析   总被引:6,自引:0,他引:6  
为分析隧道扩建过程中围岩的力学特性,确保施工期间围岩的稳定性,以漳龙高速公路后祠隧道扩建工程为依托,建立了反映实际地形的三维有限元模型,对后祠扩建隧道施工期间地表沉降、拱顶下沉、周边位移的特征以及拱脚和拱顶的应力变化规律进行计算分析。计算结果表明: 原位扩建隧道位移变化规律不同于普通新建隧道位移变化规律,隧道原位扩建施工过程中,地表沉降曲线表现出了明显的非对称性; 隧道掌子面前方12 m及掌子面后方24 m范围内变形较为迅速,为非稳定变形段; 根据隧道拱顶位移曲线,提出了针对扩建隧道位移空间变化规律的公式,该公式能预测后祠隧道的变形,从而为施工提供建议和指导; 隧道拱脚表现为压应力集中区,随着开挖的进行,拱脚主应力逐渐增大,而拱顶主应力逐渐减小并向拉应力过渡,最终拱顶呈现出较小的拉应力。  相似文献   

19.
以雅康高速公路大渡河特大悬索桥雅安岸锚碇隧道项目为依托,通过现场监测左右洞拱顶沉降和边墙围岩变形量,分析锚碇隧道在开挖过程中的围岩变形特征及其对围岩的稳定性影响。结果表明:先行洞(左洞)受到后行洞开挖的影响,其拱顶最终沉降量由6.00 mm增加到11.50 mm,右洞的拱顶最终沉降量为8.00 mm;因左右洞中夹岩的存在,后行洞左边墙变形量大于右边墙,并使先行洞右边墙的水平变形由2.41 mm增加到3.83 mm;净距变小,埋深、断面尺寸变大使隧道的拱顶沉降增加,但对边墙围岩变形不产生明显影响。  相似文献   

20.
通过对窑沟隧道周边收敛、拱顶下沉、围岩压力、钢拱架内力、喷射混凝土应力和锚杆轴力进行监控量测,了解隧道开挖过程中马兰黄土隧道围岩变形特性及支护结构受力特性。结果表明:施工过程中拱部沉降的量值远大于净空收敛的量值;围岩压力分布不均匀;钢架支护在隧道支护体系中起着非常重大的作用;拱部系统锚杆对结构的稳定性作用不大;水对拱顶沉降的影响非常严重。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号