首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究因顶管施工的挤土效应对邻近高架桥基桩水平变形的影响,以无锡地铁青石路段1号地铁出入口为例,采用MIDAS GTS软件模拟浅覆土条件下矩形顶管顶进施工,计算在不同的顶管顶进距离、基桩与隧道间净距,以及不同的顶管开挖面顶进压力、管节与土体间摩阻力条件下的基桩水平变形。结果表明: 1)矩形顶管顶进施工时会造成邻近基桩发生沿顶进方向和垂直顶进方向的水平变形,且以沿顶进方向的水平变形为主; 2)不同于其他矩形顶管工程,浅覆土条件下基桩受顶管施工的影响范围约为隧道外4D(D为矩形顶管长边尺寸),基桩的水平变形随着净距的减小而增大,且当净距小于2D时,其水平变形呈非线性快速增加; 3)相对于开挖面顶进压力,管节与土体之间的摩阻力对基桩的影响更大,其水平位移变化可分为线性增长和非线性增长2个阶段。  相似文献   

2.
为分析顶推反力荷载对墙后土体位移、应力、孔隙水压力的影响,以及不同反力加载深度、土体弹性模量、加固体厚度、加固体深度对墙后土体水平位移的影响,建立顶管顶进过程中工作井反力墙稳定性的动态三维有限元分析模型,研究结果表明: 1)反力荷载仅影响对应的部分土体区域,反力加载区域附近的土体水平位移变化大; 2)地面除0 m附近出现较大沉陷外,其他位置均表现为隆起,隆起呈平行“波痕”状; 3)反力荷载只是改变墙后土体的土压力类型,没有改变土压力的分布形态; 4)顶推反力的大小对土体孔压的变化影响轻微; 5)反向顶推力合力点深度及土体弹性模量对土体侧向位移影响较大; 6)加固体深度和厚度对土体侧向位移影响轻微。  相似文献   

3.
矩形顶管凭借空间利用率高、覆土浅等特点在市政工程项目中应用得越来越多,但类似的工程案例与研究却有限。以某过街通道项目为研究对象,采用Midas/GTS软件进行三维数值模拟,分析矩形顶管施工过程中对上部地表位移的影响。研究发现顶推力为1.0P(P为开挖面中心处土体竖向压力)时矩形顶管对掘进面前方土体影响范围相对最小,为1.0D(D为管片长边尺寸),开挖断面横向影响范围为±3.5D。同时探讨了顶管上部地表沿顶进方向水平位移的变化机理。  相似文献   

4.
为研究顶管施工对既有污水管道的影响,以郑州市轨道交通4号线商都路站1号大尺寸矩形顶管工程为背景,基于剑桥模型,建立矩形顶管工程施工的有限元分析模型,研究顶管顶进过程中顶管施工影响范围内典型纵断面和横断面的地表沉降变化规律。计算结果表明:1)对于浅埋顶管,顶管施工对地表的变形影响整体表现为沉降; 2)顶管机侧摩阻力、顶推力共同作用会造成地表短时间隆起,隆起范围为开挖断面后15~30 m; 3)污水管道主要影响隧道侧边上部范围土体水平应力的分布,对隧道深度范围内侧边土体水平应力的影响可以忽略不计,但是大大减小了污水管与管节之间土体竖向应力,减小幅度达到100 k Pa。  相似文献   

5.
为研究有无顶推力合龙对多跨连续刚构桥合龙施工的影响,以三圣特大桥为例,建立5跨连续刚构桥的有限元模型,分别计算施工、合龙温度、混凝土收缩徐变等工况下引起的墩顶水平位移,推导出该桥顶推力的计算公式并得到合理顶推力值,分析在有无顶推力作用下桥梁结构的位移和应力变化。结果表明,顶推力与桥墩的墩顶水平位移线性相关;墩高较高(H≥80 m)时,有无顶推合龙的桥梁都处于安全状态,但不顶推合龙技术能降低施工难度,缩短施工周期,经济效益更为显著。  相似文献   

6.
为研究顶管施工过程中的地表变形规律,探索地表变形的的控制技术,最大限度地保证顶管施工过程的安全,依托某总部地下停车场项目,针对国内首例采用结构分割转换工法(CC工法)实施的矩形顶管工程施工地表变形影响因素进行分析,主要包括覆土厚度、施工过程地层损失、隧道小间距施工对相邻隧道土体作用等。研究分析表明: 1)通过采取控制掘进速度、控制土舱压力、控制注浆量、控制出渣量、控制顶进姿态等地表沉降控制技术措施,有效地控制了地表变形; 2)在顶推过程的各个阶段,地表变形呈现不同的特点,当出现变形过大时,通过调整土舱压力、补充注浆等控制措施,使地表变形逐渐趋于稳定变化状态; 3)通过对施工过程地表变形监测数据整理分析,进一步验证了采取地表变形控制措施的有效性和必要性。  相似文献   

7.
为明确矩形顶管群密贴施工中顶管顶推力的发展规律与影响因素,以圆形顶管顶推力计算理论为基础,依托实际的试验工程背景,分7个工况分别进行顶推力的统计分析。通过多工况理论估算与实测数据对比,验证管顶推力的实测值与理论值在规律上的一致性,同时得出该理论值较实测值偏小的结论。针对试验工程中出现的减摩失效、顶管背土、姿态异常等问题展开研究,通过对比分析不同工况实测顶推力发展规律,最终得出: 就本工程而言,减摩泥浆的减摩效果明显,顶推力减小约38.2%; 顶管背土与顶管姿态对顶推力具有较大的负面影响,其中,顶管背土导致每节顶推力增加约16.7%,顶管姿态异常引起顶推力额外增加17.8节的理论推力。  相似文献   

8.
为研究顶管沉井及周边土体在顶进力作用下的形变范围与大小,以加固旋喷桩作为沉井周围加固体建立ABAQUS软件计算模型,并将模拟结果与工程实例、PLAXIS 3D软件所得结果进行对比分析。同时,采用广州地区花岗岩残积土进行室内沉井模型试验,并通过试验结果对数值模拟结论进行验证,得出结论如下: 1)在开挖基坑前达到设计强度的旋喷桩能有效减小基坑周边土体塌陷变形、坑底隆起。2)在施加工作顶推力下,前侧主动区首先出现贯通裂缝,竖向位移斜率增大出现明显拐点;继续增大顶推力,土体位移会急剧增大导致地表沉降严重。3)对于后背土体,在顶推力作用下,地表破裂线的切线角度从0°逐渐增大至45°+φ/2,导致破裂范围也不断扩大;达到45°+φ/2处后,继续施加顶推力会导致短轴方向破坏范围扩大的速度较长轴方向的速度更快;三维空间中被动区破坏土体在地表处产生形状为椭圆的破坏面,椭圆长轴方向为顶推轴线方向,被动破坏体呈现为牛角状椭圆楔体。  相似文献   

9.
为分析Ⅴ级围岩中圆形顶管工作井后背墙及土体的应力、位移空间分布特征,依托枝江尾矿库排水工程,对圆形顶管工作井的稳定性进行监测,并建立三维数值模型,研究井体结构尺寸参数和顶力值对后背墙土体水平位移的影响。实测和模拟结果表明:1)后背墙土体水平位移和应力竖向分布最大值均出现在顶力范围内,距后靠背钢板左右边外侧2.5 m范围内的后背墙处出现拉应力集中区域,且沿井深集中在后靠背钢板高度范围内。2)井壁厚度对限制土体水平位移影响最大,后靠背中部厚度影响次之,底板厚度影响最小;当以优化结构尺寸提高土体稳定性时,应优先考虑增大后靠背中部厚度。3)对于在中风化泥质粉砂岩层中的顶管施工,工作井井壁嵌岩深度的改变对后背墙土体水平位移影响不大,井壁可不进行嵌岩处理。4)后背墙土体水平位移与油缸顶力呈近似线性关系。  相似文献   

10.
为研究矩形顶管施工对周边环境的影响,以武汉地铁2号线王家墩东站Ⅳ号出入口兼过街通道采用的矩形顶管技术试验工程为背景,通过对矩形顶管法地下通道施工过程的现场监测和三维数值模拟,分析矩形顶管施工对周围环境的影响及地层位移的变化规律,得到武汉长江Ι级阶地区地下通道采用偏心多轴多刀盘土压平衡式矩形顶管技术施工的一般规律。实测数据分析结果和数值模拟结果表明: 1)地表的最终沉降值与该处对应断面的开挖时序成正比; 2)顶管机掌子面前方土体产生地表隆起,掌子面后方土体产生地表沉降; 3)地层沉降位移随距离顶管顶进轴线的增大而减小,影响范围约为3倍洞径。  相似文献   

11.
魏纲  李志渊  王彬 《隧道建设》2016,36(12):1421-1427
矩形顶管隧道施工会使周围土体产生扰动,进而引起超孔隙水压力,导致施工结束后继续产生固结沉降,对周围环境造成危害。采用Peck公式计算矩形顶管在施工阶段引起的地表沉降量; 运用应力释放理论和应力传递理论,推导出矩形顶管隧道周围土体中任意一点的超孔隙水压力计算公式,采用分层总和法计算土体初始超孔隙水压力消散引起的工后地表固结沉降量;二者叠加得到工后地表总沉降量。提出固结开始t时刻的地表总沉降量计算方法,研究了地表沉降和地表沉降速率随时间的变化规律。算例分析结果表明: 本文方法计算得出的沉降速率在施工结束后3个月内最大,之后迅速减小; 横向地表固结沉降曲线和总的地表沉降曲线均符合正态分布规律。  相似文献   

12.
周浩  马保松  赵阳森  张鹏 《隧道建设》2020,40(9):1324-1332
为对大断面矩形顶管施工过程中引起的地表沉降进行准确预测和有效控制,依托苏州市城北路综合管廊矩形顶管项目,基于力学理论、实测数据与数值计算等分析方法对多因素下施工引起的地层竖向变形进行研究。基于弹性力学的 Mindlin解和随机介质理论,探究管周土体变形模式,推导顶管正面附加应力、侧面摩阻力、地层损失、注浆填充等引起的地层竖向变形计算公式,结合现场实测数据发现该计算方法基本符合地表变形规律;进一步利用Matlab数值分析各个因素对地层竖向变形的影响,探究大断面矩形顶管顶进时地层竖向变形的一般性规律。研究结果表明: 理论推导的地层竖向变形解析式基本符合现场实际规律,地层损失对地表土体沉降的影响程度最大,顶管机头与周围土体的摩阻力影响次之,注浆会对地表产生一定抬升效果。  相似文献   

13.
薛青松 《隧道建设》2020,40(12):1717-1724
矩形顶管顶力作为顶进设计的重要参数,目前尚无统一的标准计算公式。结合大断面矩形顶管的特殊性,在比尔鲍曼理论、管土与管浆部分接触理论基础上进行修正改进,将顶管机机壳摩阻力单独计算,推导出大断面矩形顶管的顶力计算新方法。结合苏州城北路大断面矩形顶管工程案例,将计算值与实测值进行对比分析,研究发现: 1)采用比尔鲍曼理论计算上部土压力更为合理; 2)当形成稳定的泥浆套时,迎面阻力取1.1倍静止土压力,同实际情况吻合度高; 3)推导方法计算出的单位长度顶力与实测值较为接近,工程适用性较好。  相似文献   

14.
某拟建地铁停车场运用库上跨高铁隧道群,基础采用桩基础形式,共24根,位于两高铁隧道之间。桩基与隧道的最小净距为3 m,同时近距离跨越三条高铁隧道群。由于高铁隧道顶土体松散、桩顶荷载大、桩距隧道近等特点,桩基施工及桩基荷载可能对隧道产生影响。建立了三维有限元数值模型,模拟了桩基础承担的荷载通过桩土作用,对既有隧道结构应力、变形产生的影响,同时分析了群桩基础叠加效应对既有隧道的影响。  相似文献   

15.
易丹  严德添  党军 《隧道建设》2018,38(4):594-602
以川大停车场下穿人民南路地下人行通道矩形顶管隧道工程为依托,采用数值模拟方法对大断面矩形土压平衡式顶管隧道上跨地铁运营区间隧道所引起的地铁隧道变形进行全过程分析研究,并将模拟结果与现场监测数据进行对比,验证模型的合理性。主要结论如下: 1)顶管法隧道上跨施工引发的既有地铁隧道竖向变形受前期掌子面支护压力影响较大,随着开挖面的推进,开挖卸载效应逐渐占据主导地位; 2)地铁隧道横向位移受顶管隧道掌子面支护压力和开挖卸载效应的共同影响,且地铁隧道管片衬砌上半断面的横向位移对掌子面支护压力极为敏感。  相似文献   

16.
为分析类矩形顶管机头的挤土效应,采用理论与数据分析相结合的方法,将上海淞沪路—三门路下立交大断面类矩形顶管工程中顶管机壳体土压力及顶进阻力监测结果与规范理论值进行对比,并引入经验计算系数。研究表明:1)按土柱理论和朗肯土压力理论计算的顶管机壳体土压力偏小; 2)顶进阻力与推进里程呈线性关系,斜率为单位长度管道外壁摩擦阻力,截距为顶管机迎面阻力; 3)《给水排水管道工程施工及验收规范》2008版和1997版中给出的顶管隧道单位长度管道外壁摩擦阻力计算方法均是以圆形截面为基准的,对于本工程的类矩形顶管隧道,2008版的计算结果较实际值小20%以上; 4)对于上海砂质粉土地层,控制土压力侧向系数建议取0.8。  相似文献   

17.
本文介绍波士顿市主干道工程采用顶管法隧道连接沉管隧道岸坡段和下穿高速公路及铁路线的施工环境,重点提出并解决了大型顶推坑设计遇到的难题:在不均衡的粘性土地层条件下支护设计,保证基坑四周和顶进稳定的土体冻结法施工技术,以及顶推坑一些设计和施工问题的分析和处理,为类似的设计提供借鉴。  相似文献   

18.
马鹏  岛田英树  马保松  黄胜  周浩 《隧道建设》2022,42(10):1677-1692
首先,对矩形顶管技术的发展历程及其国内外研究现状进行综述,介绍当前矩形顶管技术主要的应用场景,并结合顶推力预测、注浆减阻、背土效应演化机制和控制对策、顶进过程中的地层响应模式和沉降计算、工作面稳定性评估等关键技术问题,对矩形顶管的理论研究进展进行回顾和讨论。其次,根据矩形断面掘进机的结构形式和切削方式,对国内外矩形顶管掘进机的开发现状及其分类进行介绍。最后,归纳当前矩形顶管在装备及工程应用领域面临的技术挑战,探讨矩形顶管技术的发展趋势,对矩形顶管装备智能化,矩形曲线顶进,长距离、大断面及复合地层等复杂场景下的矩形顶管技术进行展望。  相似文献   

19.
针对铁路桥梁合龙大吨位顶推力理论分析及顶推力作用下结构力学性能研究不足,以某4跨连续刚构铁路桥为对象,考虑施工因素、合龙温度、混凝土收缩徐变等对桥墩水平位移的影响,拟合顶推力与桥梁水平位移的关系,推导基于水平位移的顶推力计算公式,并分析顶推力作用下桥梁结构不同阶段变形与受力。结果表明:在桥墩受力不超过规范允许条件下,顶推力与桥墩水平偏位成线性关系;施加计算顶推力下实桥的顺桥向位移与计算值偏差小于5%,公式拟合良好;施加顶推力将增加成桥阶段桥墩的拉应力;施加顶推力运营10年后,大桥的主梁下挠、桥墩顺桥向水平偏位将得到有效控制,桥梁结构安全。  相似文献   

20.
以宁波市某地下人行过道顶管上穿电力隧道的监测保护工作为依托,采用MIDAS/GTS软件建立工程结构顶管施工全过程的数值模拟,在此基础之上制定合理的监测方案,着重对电力隧道的竖向位移、水平位移进行监测,并将实测数据与模拟结果进行对比验证了模型的合理性。研究结果表明,矩形顶管施工对下穿电力随的影响主要以竖向隆起为主,水平位移可以忽略;电力隧道结构变形随着顶管进程的增加而增大,并在顶管掌子面接近隧道上方前后达到最大值,但未超过规范的控制值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号