首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
通过对某寒冷气温下施工的斜拉桥承台大体积混凝土水化热进行数值模拟和现场监测承台水化热温度,对比分析低温冷却水和长冷却管管长对承台水化热温度发展变化规律的影响。研究结果表明,综合考虑混凝土入模温度、混凝土配合比、外加剂、冷却管的管径和布置形式以及混凝土养护方式等因素,采用低温冷却水和长冷却管管长方案,能有效避免大体积混凝土水化热温度产生裂缝,可为同类大体积混凝土在寒冷气温下施工提供参考。  相似文献   

2.
大体积混凝土施工的关键在于控制水化热释放的温度而引起的温度裂缝,通过有限元软件模拟重庆某长江大桥P5主塔承台浇筑过程中不同进水温度下承台的最大温升及降温速率,从而确定出最佳进水温度,以解决因冷却管进水温度变化造成水化热温度控制难的问题。在此恒温进水工况下,得出中间布设冷却管层相比中上无冷却管层最大温升值低8~9℃,有冷却管层相比无冷管层最大温升时间延后了10~12 h。从计算结果与实测数据对比看来,受到外界因素影响越小的位置测点模拟结果更准确。  相似文献   

3.
承台大体积混凝土水化热分析与施工控制   总被引:5,自引:0,他引:5  
结合援孟加拉国中孟友谊六桥主桥承台设计与施工,利用Midas/Civil有限元计算分析软件对承台大体积混凝土水化热进行仿真分析,掌握水化热变化规律及其应力影响,据此指导现场施工控制。结果表明:仿真分析很好地反映了水化热变化规律及其应力影响,混凝土质量优良,没有出现温度裂缝,可供类似大体积混凝土设计与施工借鉴。  相似文献   

4.
为研究冷却水对大体积混凝土温度场的影响和发展变化,文章以金安金沙江大桥大体积混凝承台浇筑工程为例,对其施工和养护期间水化热温度进行连续监测。根据实测水化热温度进行冷却水流速和流量控制,提出采用变速控制水冷管流速的方法。利用瞬态温度场三维有限元理论方法,应用有限元计算软件建立模型,进行水冷管参数对比分析。分析结果表明:冷却水对混凝土降温有显著效果,在水泥用量不变的情况下,合理调整水冷管流速等因素能有效控制水化热温升变化,防止有害裂缝的产生。  相似文献   

5.
由于冬季大体积承台施工过程中,混凝土水化热反应,承台内外温差较大,冷却管入水温度难以控制,很容易产生较大的应力从而导致裂缝的产生。该文通过现场高频率温度监控和高密度的测点布置,使用有限元软件精细化仿真模拟承台大体积混凝土施工的湿度变化过程,计算结果与实测温度变化趋势一致,得出入水温度每降低5℃,峰值温度降低的百分比为最大1.60%,而冷却水管附近最大拉应力提升的百分比为4.98%,入水温度对冷却管附近混凝土拉应力的敏感度大于温度峰值;再结合自循环水箱,棉被保温等合理的温控措施;最后达到设定的控制目标,验证温控方案合理。建议冬季施工的大体积承台,冷却管入水温度应不低于5℃,以10~25℃为宜,承台四周拆模时间应控制为4~5 d,拆模后立即对其进行保温养护,确保承台施工质量。  相似文献   

6.
结合苏村坝大渡河大桥承台的施工,利用Midas有限元计算分析软件对承台大体积混凝土结构的水化热进行分析,掌握水化热变化规律,提出控制大体积混凝土温差的措施,确保混凝土的施工质量。  相似文献   

7.
针对大跨连续刚构桥承台大体积混凝土结构施工过程中的水化热问题,利用有限元分析软件进行了模拟分析,并对承台施工过程中的水化热温度进行了细致的监测。经过分析,得出有限元的模拟计算结果与现场监测的温度变化趋势一致,与承台内部的最高温度相差约9%。计算模型中对流边界条件的选取、承台浇筑的分层方法、冷却管水流的模拟等与实际情况的差异是影响模拟精度的主要因素。通过不同测点布置形式可以得到混凝土内部的温度梯度分布,远离承台中心位置温度梯度较大,应采取良好的保温保湿措施防止温差下混凝土的开裂。施工过程采用计算、监测以及现场养护等综合技术措施,较好地避免了大体积承台混凝土施工期间温度裂缝的出现,确保了承台的施工质量。  相似文献   

8.
大体积混凝土承台整体浇筑能提高承台的整体性,但水泥的水化热反应较分层浇筑时剧烈,产生温度裂缝的概率高。文中采用有限元结构计算程序,用水化热分析模块模拟计算承台整体浇筑的过程,提出了控制混凝土内部最高温度、降低混凝土降温速率、优化边界约束等温控措施。  相似文献   

9.
通过对崖门大桥主墩承台的大体积混凝土水化热测试结果的分析,阐述了承台混凝土水化热发展的特点,提出了大体积混凝土裂缝控制的一些措施.  相似文献   

10.
崖门大桥主墩承台大体积混凝土水化热试验分析   总被引:6,自引:0,他引:6  
通过对崖门大桥主墩承台的大体积混凝土水化热测试结果的分析,阐述了承台混凝土水化热发展的特点,提出了大体积混凝土裂缝控制的一些措施。  相似文献   

11.
利用有限元软件Midas/Fea对大体积水下混凝土承台进行温控分析,模拟边界条件、水文状况及施工过程等因素进行全程水化热温度场的仿真分析,为承台浇筑施工方法及降温措施提供借鉴参考。  相似文献   

12.
大体积水泥混凝土在固化过程中释放的水化热会产生较大的温度变化和收缩,由此产生的温度收缩应力是导致混凝土出现裂缝的主要因素.为在某大桥施工过程中合理地进行温控,计算了该大桥承台浇筑过程的温度场及温度应力,计算结果表明该工程施工方案合理可行,不会产生温度裂缝.  相似文献   

13.
针对大跨连续梁桥箱梁0~#块施工过程中的水化热问题,基于有限元模型对冷却管通水循环的降温效果和防裂效果进行了比较分析。基于热交换平衡原理,考虑环境因素和材料特性的影响,采用Midas/FEA软件,在箱梁0~#块无冷却管通水循环模型与实测温度场数据相吻合的条件下,比较了箱梁0~#块无冷却管和冷却管通水循环计算模型的混凝土降温效果、温度应力和最小裂缝系数;通过对计算结果的分析,进一步明确了冷却管通水循环对0~#块混凝土水化热裂缝防控的有效性。结果表明:冷却管通水循环可显著地降低箱梁0~#块混凝土的温度峰值、应力峰值和表面开裂几率,为大跨连续梁桥箱梁0~#块高强混凝土施工质量控制提供了有效措施。  相似文献   

14.
《公路》2017,(7)
现阶段大体积混凝土、高强混凝土以及耐久性混凝土在实际工程中得到了广泛的应用,由水化热引起的温度裂缝问题也越来越被设计人员所关注。水化热引起的温度裂缝经常发生在结构施工初期,宽度较大且具有贯通性,对结构的耐久性和透水性产生不利影响。因此在整个设计、施工以及监理阶段需要对水化热引起的温度应力进行详细验算。依托某特大桥承台大体积混凝土的施工,利用有限元软件模拟水化热过程,对温度、应力提出控制措施,指导实际施工。在施工时采取合理的控制措施,并进行温度数据的采集以验证措施的有效性。  相似文献   

15.
曾波  兰品万 《中外公路》2004,24(5):65-67
大体积混凝土施工时,由于混凝土的体积大,聚集的水化热大,在混凝土内外散热不均匀以及受到内外约束的情况下,混凝土内部会产生较大的温度应力。导致裂缝产生,为结构埋下严重的质量隐患。因此。大体积混凝土施工中的温度监控是控制裂缝产生的关键。文中介绍了岳阳洞庭湖大桥主墩大体积混凝土吊箱承台在设计和施工中对裂缝的控制情况。  相似文献   

16.
杭州湾跨海大桥北航道桥斜拉桥承台混凝土温度裂缝控制   总被引:3,自引:1,他引:3  
斜拉桥承台一般均为大体积混凝土,因水泥水化热的作用,承台内外温差过大,易使混凝土出现早期温度裂缝。杭州湾跨海大桥主跨承台混凝土浇筑分层均较厚,为3~4.5 m,在承台施工中采取了行之有效的温控措施,有效地控制了温度裂缝,确保了承台混凝土的耐久性。  相似文献   

17.
为研究塑料波纹管道作为冷却管的降温效应,以望东长江大桥索塔下横梁为研究对象,对传统金属冷却管降温措施进行了改进,提出采用空气压缩机向波纹管道内压"水雾"的降温措施。并通过试验测试了波纹管道内的"水雾"降温效应及热导性。在此基础上,采用桥梁商业程序MIDAS.FE建立下横梁实体有限元模型,并对其进行水化热仿真分析,结果表明:冷管对混凝土水化热降温效应明显,有无冷管混凝土最高温度相差12℃。该降温措施构思新颖、就地取材,为大体积预应力混凝土温控提供了一种全新的解决办法。  相似文献   

18.
为研究大体积混凝土水化热温度场的分布规律,了解冷却水管的具体降温效果以及相关参数对降温效果的影响,以某大跨桥梁大体积混凝土承台为工程背景,采用有限元方法建立承台实体模型,模拟混凝土水化热温度场,分析冷却水管的质量流率和初始温度等参数对混凝土水化热温度场的影响。结果表明:混凝土浇筑后的水化热温度场总体呈现出先升后降的趋势,一般浇筑后2~3d达到温度峰值;布置冷却水管后,混凝土水化热的温度峰值降低了7%~31%,混凝土内总热量减少了约50%;改变冷却水管的质量流率对水化热温度场升温阶段的影响很小,对降温阶段的影响比升温阶段有所增大;降低冷却水初始温度可以加快水化热冷却速率,实际工程中,不必将冷却水温降得过低,保持在环境温度左右即可达到良好的冷却效果。  相似文献   

19.
依托某双塔双索面梁斜拉桥,基于有限元软件MIDAS/Civil对大体积混凝土承台的水化热温度场进行了仿真模拟,详细研究了水化热温度场及混凝土内外温差等变化规律。并基于有限元研究成果,采取了大体积混凝土配合比优化设计、原材料预冷、预埋水管冷却、优化浇筑顺序及养护等多个温度控制措施。实践证明,上述措施可以有效控制混凝土水化热,提高混凝土施工质量,降低施工成本,从而获得良好的经济及技术效益。  相似文献   

20.
公路建设中,尤其是桥梁承台等大体积混凝土的施工过程中,一般采用冷却水降温方式处理由水化热造成的病害,以更好地控制混凝土因水化热引起的开裂。采用有限元模型对混凝土内部降温过程进行模拟,并分析不同冷却水温度下降温方案的优劣,分析结果可为同类工程设计和施工提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号