首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
为了解钢-UHPC组合梁自锚式悬索桥的受力性能及经济性,以益阳青龙洲特大桥为背景,建立全桥空间有限元杆系结构模型及组合梁局部有限元模型,研究钢-UHPC组合梁的抗弯承载能力、UHPC桥面板的抗裂能力,并与常规钢-混组合梁经济性进行对比。结果表明:在最不利组合下,组合梁箱形钢主梁、钢横梁的最大拉应力分别为206.3MPa、212.9MPa,小于钢材抗拉强度设计值;正截面承载能力状态UHPC桥面板上、下缘最大压应力分别为33.76MPa、24.4MPa,安全系数达1.85,结构受力安全;频遇组合下UHPC纵肋下缘最大拉应力为16.73 MPa,为初裂应力的89%,抗裂性能良好。桥面板采用UHPC结构时,比采用普通混凝土结构增加了163%的建造费用,但综合结构变化后的其他主要分部工程,总体建造成本仅增加2.0%,考虑到UHPC结构优异的力学性能及耐久性,钢-UHPC组合梁方案经济上较为合理。  相似文献   

2.
以某大跨连续钢-混凝土组合梁为工程背景,对钢-UHPC组合梁和钢-C50混凝土组合梁进行整体和局部对比分析。结果表明,整体计算中,钢-UHPC组合梁的刚度略小于钢-C50混凝土组合梁,基本组合下钢-UHPC组合梁中钢梁应力比钢-C50混凝土组合梁下降约27%。局部有限元分析中,频遇组合下钢-C50混凝土组合梁的桥面板已开裂;钢-UHPC组合梁桥面板的最大拉应力作用范围比钢-C50混凝土组合梁小,仅出现在纵肋下缘,且最大拉应力小于UHPC材料的开裂应力。钢-UHPC组合梁可大幅降低结构自重,进一步减小钢梁截面,有望解决大跨度连续组合梁中桥面板开裂问题。  相似文献   

3.
为了克服传统预应力混凝土主梁、钢主梁、钢-混凝土组合主梁由于材料和结构本身缺陷所引起的病害,提出了适用于(特)大跨径桥梁且无横向表面受拉接缝的钢-UHPC(Ultra-high Performance Concrete)轻型组合桥梁结构。为验证轻型组合梁用于斜拉桥的可行性,建立了空间有限元模型进行静力性能分析和疲劳应力幅计算,并制作了9个足尺条带模型试验梁,开展了静载试验研究。研究结果表明:受拉钢筋配筋率、钢筋直径、直线型纤维直径和长度对UHPC的初裂应力影响不大,而纤维带端钩能显著提高初裂应力;端钩型、直线型纤维UHPC试验梁正弯矩初裂应力分别为19.4,10.6 MPa,前者高出后者83%,负弯矩初裂应力分别为13.8,8.4 MPa,前者高出后者64%;正常使用极限状态时,端钩纤维试验梁正负弯矩初裂应力分别为华夫板下缘、上缘频遇组合拉应力的1.45倍、1.66倍;承载能力极限状态时,端钩纤维试验梁正负弯矩名义拉应力试验值分别为华夫板下缘、上缘基本组合名义拉应力的2.1倍、2.4倍;基于S-N曲线预测UHPC华夫桥面板疲劳寿命远大于200万次。  相似文献   

4.
张欣  李瑜  刘勇 《中外公路》2023,(4):147-152
为优选大跨度自锚式悬索桥钢-UHPC轻型组合加劲梁结构方案,该文以益阳市青龙洲大桥为背景,采用有限元模拟、足尺试验对比验证3种钢-超高性能混凝土(Ultra-High Performance Concrete,UHPC)组合加劲梁方案,对比静力性能、经济特性等指标。结果表明:UHPC华夫板、UHPC无腹筋纵肋板、长栓钉带钢板条的UHPC纵肋板方案均可满足设计需要,长栓钉带钢板条的UHPC纵肋板有更高的抗弯刚度、抗裂安全储备,可达到需求值的5.4倍;桥面板新型T形接缝通过合理预留钢筋实现桥面板零焊接,并有效减少UHPC板内高拉应力区纤维不连续引起的断缝;钢-UHPC轻型组合梁性能优越、适用性高、经济性好,具有良好的应用前景。  相似文献   

5.
为综合解决正交异性钢桥面板疲劳开裂和铺装层易损的难题,提出了由正交异性钢桥面板与薄层超高韧性混凝土STC组合而成的轻型组合桥面板结构。由于STC层显著提高了桥面板的刚度,因此可对结构进行优化。在带U肋轻型组合桥面板的基础上,提出了带大U肋的轻型组合桥面板方案。将此方案拟应用于某大桥,与原结构相比,用钢量基本不变,而面板-U肋-隔板三者间焊缝总长度减少36%,不仅降低了施工难度,也减少了焊接缺陷,进一步解决了钢桥面板疲劳开裂的问题。采用4种不同的结构体系,建立了钢箱梁节段有限元模型,基于热点应力法,对体系的6个典型疲劳细节进行疲劳验算。结果表明:在大U肋轻型组合桥面板中,6个疲劳细节的应力水平与传统U肋轻型组合桥面板接近,降幅效果基本一致;同时,通过计算说明了大U肋轻型组合桥面板具有良好的横向受力性能,其栓钉也具有足够的抗疲劳性能。为探究此轻型组合桥面板STC层的纵向弯拉性能,开展了负弯矩条带足尺试验,确定大U肋轻型组合桥面板的STC顶层名义开裂应力为24.1 MPa,远超STC层计算最大拉应力10.92 MPa。以上分析初步表明:带大U肋的轻型组合桥面板有较好的疲劳和静力性能。  相似文献   

6.
为了解新型大纵肋钢-超高性能混凝土(UHPC)正交异性组合桥面板对传统正交异性钢桥面板的受力性能的改善效果,以港珠澳大桥深水区非通航孔6×110m连续钢箱梁桥为背景,建立全桥有限元模型,对2种桥面方案的静力性能进行对比,建立节段有限元模型,对比2种桥面方案U肋与顶板连接焊缝处的疲劳性能,并分析U肋开口宽度和UHPC结构层厚度对大纵肋钢-UHPC正交异性组合桥面板疲劳性能的影响。结果表明:2种桥面方案下钢箱梁控制点的位移和应力相差不大,所提出的大纵肋钢-UHPC正交异性组合桥面板在中等跨度连续梁桥中具有较好的适用性;大纵肋钢-UHPC正交异性组合桥面板的疲劳性能显著优于传统正交异性钢桥面板;增大U肋开口宽度会导致U肋与顶板连接焊缝应力幅增加,增加UHPC结构层厚度能显著降低U肋与顶板连接焊缝应力幅。  相似文献   

7.
针对斜拉桥传统钢-混组合梁的不足,提出双边工字钢-UHPC桥面板组合梁。以湖南马路口资水大桥为依托,分别采用有限元软件MIDAS和ANSYS建立全桥模型和主梁节段模型,分析组合梁的受力性能,制作UHPC桥面板模型试件进行弯曲试验,研究UHPC桥面板的受力性能。结果表明:荷载组合作用下,钢主纵梁、钢横梁的最大正应力分别为223 MPa、197MPa,最大剪应力分别为145MPa、65MPa,小于钢材强度设计值;顺桥向、横桥向弯曲构件破坏时的名义拉应力分别为63.2MPa、34.5MPa,初裂应力分别为23.2MPa、10.4MPa,UHPC桥面板的抗弯承载能力满足要求,且具有良好的抗裂性能。  相似文献   

8.
为解决钢混结合段区域U形加劲肋传力不流畅,受力以及施工复杂等问题,提出一种新型的带板肋的超高性能混凝土(UHPC)轻型组合桥面板,通过有限元分析将其抗疲劳性能与带U肋超高性能组合桥面板进行对比分析研究,并进一步对该结构在负弯矩作用下的承载能力,UHPC层的开裂应力,破坏模式以及荷载挠度关系进行实桥足尺模型试验研究。结果表明:(1)板肋组合桥面结构在疲劳性能上有更大优势,其在疲劳细节2,3,4上的应力幅均大大低于U肋组合结构;(2)足尺模型试验得到板肋轻型组合桥面结构的开裂应力为20.1 MPa略低于U肋轻型组合结构23.6 MPa;(3)板肋组合结构的破坏模式均为加劲肋屈服导致结构丧失承载能力而发生破坏,而U肋组合结构的破坏模式为横隔板屈曲失稳破坏于工程应用不利;  相似文献   

9.
为明确大纵肋正交异性钢-免蒸养UHPC组合桥面板的力学性能,进行免蒸养UHPC材料力学性能试验、构件静力模型试验与疲劳模型试验,分析其材料基本力学性能、剪力钉抗剪性能、组合桥面板抗弯性能及疲劳性能。结果表明:免蒸养UHPC材料的弹性模量略高于高温蒸养UHPC材料,其他力学性能指标相较于高温蒸养UHPC材料均有不同程度的降低;免蒸养UHPC中剪力钉的破坏模式表现为剪力钉根部剪断并伴有焊环局部UHPC压溃,组合桥面板名义开裂应力为13.7 MPa,满足结构抗裂性要求;组合桥面板的疲劳破坏模式表现为UHPC结构层开裂,继而纵肋与横隔板连接焊缝焊趾处疲劳开裂,组合桥面板的疲劳寿命最终由焊接细节的疲劳强度所控制;纵肋与横隔板连接焊缝的等效疲劳强度为157 MPa,满足现行规范要求。  相似文献   

10.
该文提出了一种新型的带板肋的超高性能混凝土轻型组合结构,通过有限元建模的方法分析了其应用于浙江五一大桥时的抗疲劳性能并与原U肋加劲的钢桥面板进行对比分析。针对该结构在负弯矩作用下UHPC的抗弯拉疲劳性能以及组合结构层间栓钉抗剪疲劳性能开展了足尺模型疲劳性能试验。结果表明:(1)带板肋的组合桥面结构完全解决了传统钢桥面中部分细节疲劳抗性不足的问题;(2)负弯矩疲劳试验得到板肋轻型组合桥面中UHPC层在10MPa弯拉应力幅的作用下经过500万次疲劳荷载作用后裂缝宽度仅为0.09mm,对结构整体性能无明显影响;(3)板肋组合结构中栓钉连接件在90 MPa疲劳应力幅作用下经过50万次循环荷载作用后,未见任何破坏迹象及层间滑移裂缝,换算得到实桥中栓钉抗剪疲劳寿命不小于76 293万次;(4)板肋组合结构中加劲肋在193MPa疲劳应力幅作用下经过50万次循环荷载作用后发生断裂破坏,换算得到实桥中加劲肋疲劳寿命为5 616万次。  相似文献   

11.
针对钢-UHPC组合桥面板使用传统机械剪力连接件的不足,提出一种装配式钢-UHPC组合桥面板。为给该装配式组合桥面板的设计和应用提供依据,以国内某大跨度扁平钢箱梁桥为依托,将该桥钢桥面板改为装配式钢-UHPC组合桥面板进行试设计,并采用ANSYS建立主梁节段空间有限元模型,对试设计的装配式组合桥面板的受力性能进行研究。研究结果表明:装配式组合桥面板中,UHPC层的横桥向拉应力和粘结层的横桥向剪应力是结构计算的控制指标;在装配式组合桥面板结构中,UHPC层受到的最大拉应力为10.87 MPa,粘结层受到的最大剪应力为0.97 MPa,材料均能满足结构的受力要求;装配式组合桥面板的钢面板最不利构造细节的最大应力幅仅为纯钢桥面板的1/5,说明装配式组合桥面板结构可满足实际桥梁需求且可有效地避免纯钢桥面疲劳开裂等病害。  相似文献   

12.
为缩短城市高架桥现场作业时间,利用超高性能混凝土良好的力学性能及耐久性,提出一种可整体预制、整跨吊装、快速成桥的钢-UHPC轻型组合桥梁,并针对传统钢-混凝土组合连续梁桥负弯矩区桥面板拉应力过大的情况,提出一种可与梁段整体预制的简支变连续结构。对30m跨径钢-UHPC轻型组合城市桥梁试设计,并与现有方案进行材料用量及经济性能对比;利用MIDAS/Civil软件对试设计桥梁进行荷载组合效应计算,根据计算结果以中国桥梁设计规范为基础,同时借鉴法国UHPC结构设计规程,分别基于塑性设计法和弹性设计法对钢-UHPC轻型组合连续桥梁的承载能力极限状态和正常使用极限状态进行设计计算,并对正常使用极限状态钢筋数量及裂缝宽度的关系进一步探究;建立负弯矩区精细化的局部有限元模型,根据计算结果选择拉应力较大的桥梁纵向接缝进行1∶1足尺模型试验研究。研究结果表明:试设计桥梁在预估价较低的情况下结构高跨比由1/21降低至1/28,自重减至传统钢-混凝土组合桥梁的54%;钢筋数量增加初期,UHPC板裂缝宽度迅速减小,随着钢筋数量继续增大,其对裂缝宽度控制的贡献明显减小;试设计钢-UHPC轻型组合城市桥梁具有足够的抗弯与抗剪承载力,负弯矩区整体应力水平不高,同时试验接缝抗拉强度远大于计算值,满足工程使用要求。  相似文献   

13.
提出了一种超高性能混凝土-普通混凝土(UHPC-NC)组合结构,以解决传统中小跨径桥梁的不足。①为了研究所提出的UHPC-NC组合梁抗弯性能,设计了一根1∶2的缩尺模型,并进行了试验研究和有限元分析,结果表明试验模型的名义初裂应力为23. 4 MPa,承载能力极限状态的名义应力为62. 9 MPa,能够满足工程正常使用极限状态和承载能力极限状态下的抗弯承载力要求。②建立了试验梁的ABAQUS有限元模型,计算结果与试验结果吻合较好,表明所建立的有限元模型具有一定的准确性和适用性。③通过有限元模型分析了纵向主筋配筋率、UHPC抗拉、压强度及现浇桥面板强度等级对组合梁抗弯性能的影响。结果表明提高主梁配筋率、UHPC抗拉强度能够显著提高组合梁的极限承载能力,而UHPC抗压强度和现浇桥面板的强度等级对组合梁的极限承载能力影响不大。  相似文献   

14.
某跨江大桥为主跨460m的斜拉桥,运营多年后正交异性板钢箱梁出现大量裂纹,提出采用超高性能混凝土(UHPC)组合桥面(由配钢筋网的UHPC层与钢桥面板通过短栓钉组合而成)进行改造。为选择合适的改造方案,采用有限元法建立原钢箱梁和UHPC组合桥面钢箱梁(UHPC层厚4.5,5.5,6.0cm)模型,分析各疲劳细节应力及UHPC层应力;开展UHPC层配置钢板条的组合结构模型试验,验证其疲劳性能。结果表明:UHPC组合桥面降低了钢箱梁各疲劳细节最大应力幅,降幅为11%~88%,顶板疲劳细节处裂纹尖端最大应力幅降幅达92%;疲劳荷载作用下,UHPC层顶面应力较低,钢桥面板开裂后UHPC层底面应力较大;采用钢板条对5.5cm厚UHPC层的组合结构加强后,UHPC层名义开裂应力达43.2MPa,200万次疲劳寿命达22.1MPa,疲劳性能满足要求,选择该方案进行改造。  相似文献   

15.
为研究将超高性能混凝土(UHPC)应用于铁路组合梁结构的适用性,以温福铁路白马河特大桥为背景,对64 m跨径的双线铁路简支梁结构开展UHPC组合截面设计研究。提出底板及腹板采用UHPC材料、顶板采用普通混凝土材料的组合箱形断面形式,通过有限元软件建立双层空间梁单元模型对UHPC组合梁进行计算分析;提出普通混凝土桥面板先预制并养护后再与UHPC腹板、底板结合成一体的UHPC组合梁施工方案,并对组合梁的收缩徐变效应进行计算分析。结果表明:同跨径的UHPC组合简支梁相比于普通混凝土梁可减少约30%的自重,可有效减少桥梁下部结构的工程量及运架梁的费用;所提出的UHPC组合梁施工方案可有效改善组合截面交界面的收缩徐变应力。  相似文献   

16.
通过对组合连续梁负弯矩区影响因素的建模分析,建议超高性能混凝土(UHPC)桥面板厚度与组合梁高度之比为1/5~1/9,组合梁高度与跨径的比值为1/18~1/22,钢梁与UHPC桥面板刚度之比为2~10;钢-UHPC组合连续结构梁高远低于钢-C50混凝土组合连续梁结构梁高,结构负弯矩区UHPC桥面板不开裂.  相似文献   

17.
以在建洞庭湖二桥为工程背景,建立两种纵肋形式的轻型组合桥面板局部有限元模型,对比分析了两类结构的静力和疲劳性能。结果表明:与传统正交异性钢桥面板相比,轻型组合桥面板的静力和疲劳性能均有一定程度的改善,且全寿命经济效益显著;带开口肋的轻型组合桥面板基本消除了传统开口肋正交异性钢桥面板的纵肋过柔,荷载横向分配能力较差等缺点,应用前景广阔。  相似文献   

18.
针对武汉军山长江大桥桥面铺装层损坏和正交异性钢桥面板疲劳开裂的问题,珠京方向半幅桥面改造为钢-超高性能混凝土轻型组合桥面结构,厚55 mm的超高性能混凝土(UHPC)层采用短栓钉与钢桥面板连接,与上部SMA10沥青混凝土(厚30 mm)采用环氧树脂粘结材料连接。利用ANSYS软件建立局部梁段有限元模型,进行改造前、后的疲劳细节处应力幅对比分析,并基于健康监测系统以及钢箱梁局部应变监测系统,对组合桥面改造后效果进行实时监测。结果表明:UHPC层对面板与U肋连接细节应力影响极为明显,与柔性铺装相比,应力降幅最高为86.4%,可极大降低钢桥面板的开裂风险;桥面改造后,U肋底部、顶板底部、横隔板构造细节处的应力幅值、等效应力均明显降低,可显著提高钢桥面板的疲劳寿命。  相似文献   

19.
《公路》2015,(12)
由结构体系和受力特性共同决定,大纵肋正交异性钢桥面板纵肋与顶板焊缝以及纵肋与横隔板焊缝疲劳问题突出,是结构疲劳性能的控制部位。引入组合结构桥面板理念,通过在其顶板上铺设混凝土结构层组成新型组合桥面板,探索改善上述控制部位疲劳性能的新途径及其可行性,并通过与传统正交异性钢桥面板和薄层RPC组合桥面板两类关键疲劳易损部位的对比研究,验证其抗疲劳性能的优越性。研究结果表明,所提出的新型大纵肋正交异性钢—混凝土组合桥面板通过将混凝土结构层与正交异性钢桥面板组成协同受力体系,能够有效增强桥面板的整体受力性能和关键疲劳易损部位的疲劳性能,其典型疲劳易损部位的应力幅显著小于传统的正交异性钢桥面板,其疲劳性能优于传统的正交异性钢桥面板,是具有较好推广应用前景的新型桥面板结构形式。  相似文献   

20.
为了解决在修补钢-UHPC轻型组合桥面结构的UHPC层破损区域时遇到的UHPC层局部拆除和接缝处理难题,提出了一种通过拉拔UHPC层内钢筋来拆除UHPC破损区域的方法,设计了一种将受力钢筋焊接于钢顶板的新型局部修补接缝形式。为了证明拆除方法的可行性,利用足尺试验模型进行了指定区域UHPC层的拆除试验;为了验证新-旧UHPC接缝的受力性能,完成了纵向接缝、横向接缝的强度试验。结果表明:该拆除方法可以快速完成UHPC破损区域的拆除;新型修补接缝方法通过将接缝位置处的受力钢筋焊接于钢面板,有效提高了接缝的抗拉强度;试验测得接缝在纵桥向、横桥向的开裂应力分别为21.8,17.4MPa,接缝开裂应力分别为现浇段开裂应力的73.4%、63.9%,且明显大于传统接缝9.8MPa的开裂应力;通过对洞庭湖大桥进行有限元计算分析得到UHPC层纵桥向、横桥向的最大拉应力分别为15.4,5.4 MPa,小于接缝的实测抗拉强度,新型修补接缝完全满足该桥UHPC层最大拉应力要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号