首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 142 毫秒
1.
基于三维车辆模型和车-桥耦合分析程序,利用接触面间的位移协调条件与力相互作用建立车-桥耦合振动方程;以某大跨度连续刚构桥为工程背景建立桥梁有限元模型,以桥面不平整作为系统的自激激励源,分别采用有限元软件和MATLAB车-桥耦合振动分析程序,在实测桥面数据下对整体模型在车辆作用下的动力响应和冲击系数进行分析,并对国内规范和国外几种常用规范计算的冲击系数进行对比分析。  相似文献   

2.
提出了基于有限元模型修正的单车通过多梁式桥梁的移动荷载识别方法.首先采用Butterworth低通滤波器对现场采集到的24 h内所有过桥车辆产生的桥梁动位移信号进行滤波处理,提取静力响应极值,并严格按照车型进行分类统计;其次,对观测桥梁进行基于静力试验的有限元模型修正,建立能够反映桥梁真实状态的基准有限元模型;最后将修正后的有限元模型输入至自行研发的BDANS软件中的多梁式车-桥耦合振动模块,以车型为单位,依据该车型车辆在桥面横向移动时各主梁竖向位移响应分配关系,结合多梁式车-桥耦合振动模块以及实测车辆过桥时各主梁静力极值响应,识别出车辆在桥面行驶的横向位置,然后根据识别出的车辆横向行驶位置和实测桥梁响应识别出车质量.结果表明:该识别方法较为可靠,识别精度较高,能按照车型批量进行识别,可大规模处理交通荷载数据.  相似文献   

3.
随着公路等级、行车速度以及汽车载重等的不断提高,汽车-桥梁相互作用问题越来越突出.在车-曲线桥耦合动力系统中存在"弯-扭耦合作用",使得曲线桥的动力学分析相对复杂得多.基于APDL语言采用位移耦合法建立了车-曲线桥耦合系统有限元模型,并与已有文献对比验证了该方法的正确性.以一座5跨连续曲线箱梁公路桥为例,计算了该桥在车辆荷载作用下的动挠度响应,并分析了偏载、车速、离心力对连续曲线梁桥各跨跨中截面动挠度和动力冲击系数的影响.  相似文献   

4.
为研究波浪对跨海桥梁风车-桥耦合振动系统的影响,针对跨海桥梁所处风大、浪高的极端环境,建立了波浪-风-列车-桥梁动力模型,将风场视为空间相关的平稳高斯过程,高速列车采用质点-弹簧-阻尼器模型模拟,精细化全桥模型通过有限元方法建立,考虑风-列车-桥梁之间的耦合作用,波浪作为外部荷载施加到该耦合体系中。以主跨532 m某海洋桥梁为例,通过自主研发的桥梁科研软件BANSYS (Bridge Analysis System),分析了波高、风速、车速对耦合模型车辆和桥梁响应的影响。结果表明:风车-桥耦合振动体系的车辆和桥梁响应受波浪影响显著,车辆和桥梁响应在与波浪荷载一致的方向增加显著,15 m·s-1风速下,考虑波浪影响的车辆横向加速度最大值约是不考虑波浪时的1.3倍,考虑波浪影响的跨中横向位移最大值约是不考虑波浪时的22倍,而在非一致方向波浪对车-桥响应的影响较小;不同风速下,波浪对车辆横向加速度影响显著,考虑波浪影响的车辆横向加速度约是不考虑波浪时的1.2倍,而车辆竖向加速度、轮重加载率、倾覆系数等指标主要受风速的影响;波浪基频与桥梁横向位移响应谱主峰频率一致,波浪已成为影响桥梁横向位移响应的控制因素;波浪减弱了车速对车-桥响应的影响,随着波高的增加,车辆和桥梁响应对车速的变化更不敏感。  相似文献   

5.
为了研究大跨桥梁在风、车及地震联合作用下的动力响应,在已有风-车-桥耦合振动分析程序的基础上,利用大质量法模拟桥梁受到的地震作用,建立了地震-风-车-桥耦合振动分析的数值模拟平台,通过质量-弹簧-阻尼系统模拟车辆模型,利用有限元方法建立桥梁模型,采用谱表示法模拟路面粗糙度、风场和地震动,通过分离迭代方法求解地震-风-车-桥耦合振动系统的动力响应。以主跨1 088 m的苏通大桥为例,基于建立的地震-风-车-桥耦合振动分析平台,计算分析了日常风荷载与地震联合作用下桥梁和车辆的动力响应;并进一步探究了地震动完全空间变异性对地震-风-车-桥耦合系统车桥动力响应的影响。结果表明:处于日常运营阶段的大跨桥梁结构(仅承受风和车辆荷载)受到突发地震时,桥梁和桥上行驶车辆的动力响应将急剧增加,地震动对车-桥系统动力响应起控制作用;与地震-车-桥系统中的桥梁响应相比,考虑风荷载会增加主梁跨中的横向振动,但对主梁跨中的竖向振动会有抑制作用;与只考虑地震荷载作用的车桥响应相比,同时考虑地震和平均风速为20 m·s-1的脉动风荷载联合作用下的主梁跨中横向位移极值最大增大约40%。虽然地震动是车桥耦合振动的控制荷载,但是日常风荷载对大跨桥梁车桥振动的影响不可忽略。地震发生后,车辆的横向加速度极值超过0.5g,竖向加速度极值接近1g,可能引起车辆的侧滑或翻滚,车辆的运行行为有待进一步研究。与仅考虑地震动行波效应相比,考虑地震动完全空间变异性的车桥振动响应不仅在波形上产生很大差异,而且响应极值也发生了较大的变化,可见在地震动输入时需要考虑完全空间变异性来保证得到的车桥响应结果偏于安全。  相似文献   

6.
为了解决大跨度桥梁在随机车辆荷载和风荷载作用下局部应力求解耗时问题,首先以矮寨大桥为工程背景,建立壳-梁混合单元有限元模型,确定大桥应力的关键位置及关键点,采用分段拟合方法获得随机车辆荷载的影响面函数和风荷载的影响线函数;结合吉茶高速实际交通量特征及随机参数分布特征,采用蒙特卡罗方法,编制抽样程序生成随机车流样本。其次采用风-车-桥耦合振动分析获得典型车辆的等效车辆荷载;引入风荷载动力影响系数,提出了一种简便实用的随机车流下大跨度桥梁风致应力分析方法。最后应用ANSYS计算分析结果验证所提方法的正确可行性,分析矮寨大桥在随机车流和风荷载联合作用下的关键点应力响应。结果表明:风速低于15 m·s-1时,风荷载引起大桥关键点应力响应远小于车辆荷载引起的应力响应;繁忙车流下应力响应的幅值并不比稀疏车流下的应力幅值大很多,但是繁忙车流下应力响应的峰值数量远大于稀疏车流下的峰值数量,即应力的循环次数多,会增大桥梁的疲劳损伤。  相似文献   

7.
为研究车-桥耦合动力作用下的车辆与桥梁力学行为,基于ABAQUS有限元软件建立二自由度四分之一车辆模型和简支桥模型。车辆模型考虑橡胶轮胎超弹性,桥面铺装层考虑沥青混合料黏弹性。基于轮胎与桥面铺装层接触关系,建立车-桥耦合动力模型,采用中心差分法和有限元理论求解车辆和桥梁时域响应。结果表明:通过与现场桥面铺装层上面层跨中竖向应力测量值比较,验证所建车-桥耦合动力模型具有一定可行性;未添加路面不平度上面层跨中最大竖向压应力、最大横向压应力、最大纵向压应力分别为0.608,0.283,0.338 MPa,添加路面不平度上面层跨中最大竖向压应力、最大横向压应力、最大纵向压应力分别为1.327,0.652,0.706 MPa,分别增大118.257%,130.389%,108.876%;未添加路面不平度最小和最大车辆悬架弹力分别为36.178,59.322 kN,变化幅度为63.973%,添加路面不平度最小和最大悬架弹力分别为33.738,60.859 kN,变化幅度为80.387%;未添加路面不平度纵梁跨中最大竖向压应力、最大横向拉应力、最大纵向压应力分别为0.282,0.193,0.159 MPa,添加路面不平度分别为0.449,0.418,0.348 MPa,分别增加59.220%,116.580%,118.868%。添加路面不平度,车-桥耦合动力效应增强,车辆与桥梁各项响应均增大。  相似文献   

8.
为分析桥面不平顺状态下含表面裂纹时桥-车耦合振动,利用1/4车辆模型,基于桥面不平顺产生的随机激励,运用Hamilton原理建立桥面不平顺状态下含裂纹桥-车耦合系统动力方程,应用Runge-kutta法对方程进行求解,分析不同等级桥面不平整度下,裂纹深度、车速、桥车质量比等参数对桥梁结构位移的影响。结果表明,随着裂纹深度的增加,梁体跨中位移峰值增大,且考虑桥面不平顺状况时梁体跨中位移响应更复杂。  相似文献   

9.
当前车辆撞击桥梁的案例较多,基于ABAQUS有限元程序,通过仿真模拟,深入研究车-桥碰撞的内在科学机理,针对不同质量工况车辆撞击桥梁的过程进行了有限元分析。结论表明:车速相同时,不同质量车辆撞击主梁和支座所产生的应力和位移不同,桥梁结构的破坏形式也不同。  相似文献   

10.
由于支座、桥墩地基等的作用,桥梁端部实际受弹性支承约束,且因施工误差、材料老化等影响,两端支承刚度常常不等。为揭示支承、梁体、车辆之间的耦合关系及不等支承条件的影响,建立了不等支承刚度条件下桥梁-车辆动力耦合解析理论。首先,基于振型叠加法推导了考虑不等支承刚度约束的桥梁、车辆动力响应闭合解,解析了弹性支承条件对车-桥系统响应的时频影响关系;其次,建立了弹性支承条件下车-桥耦合有限元模型,验证了解析理论的准确性;然后,研究了弹性支承刚度及左、右不等程度对车-桥系统响应的放大效应;最后,探索了基于车辆响应的桥梁频率及支承刚度状态的间接测量方法。研究结果表明:(1)支承刚度衰减使桥梁频率降低,响应幅值增大,且频率阶次越高影响越显著;(2)车-桥系统响应幅值与车辆起始运行位置的桥端支承刚度成反比,从刚度弱侧支承端出发的车辆响应被显著放大,即“弱侧放大”现象;(3)车体响应中包含桥梁频率,且呈现左右对称分叉特征,证实了利用车体加速度响应识别弹性支承梁频率的可行性;(4)利用车辆正反双向行驶加速度响应的“弱侧放大”现象,可判别桥梁支承的弱刚度端,同时增强桥梁频率的辨识,且对路面平整度、结构阻尼、噪...  相似文献   

11.
高墩大跨连续刚构桥的动力特性分析   总被引:1,自引:0,他引:1  
以一座高墩大跨连续刚构桥为研究对象,运用大型通用有限元软件MIDAS建立该桥的空间有限元模型,对其动力特性进行计算分析,获得了该桥的自振频率和振型,为进一步开展结构抗震、抗风和车桥振动研究奠定了一定的基础.  相似文献   

12.
强风环境下斜拉桥车桥系统动力响应分析研究   总被引:2,自引:2,他引:0  
基于模态综合分析理论,在推导复杂车辆模型刚度、阻尼矩阵和建立车桥系统风荷载模型的基础上,提出一种全面考虑动力风载效应的车桥系统动力响应分析方法,结合桥例对强风环境下的斜拉桥车桥系统的动力响应进行了分析研究。结果表明:强风下桥梁竖向位移响应受风载影响显著,横向位移响应主要由风荷载控制;低风速下桥梁的振动加速度响应受风荷载影响较大;风荷载引发的桥梁振动对车辆竖向位移和加速度响应影响较大,横向响应由风载和桥梁响应控制,风载对车桥系统动力响应影响明显。所提出的方法具有较高的精度和分析效率,可为其他类型大跨桥梁的相关分析提供参考。  相似文献   

13.
考虑车桥耦合振动计算了汽车通过曲线连续梁桥时车辆和桥梁的振动。把车辆和曲线连续梁桥视作两个分离子体系,分别应用广义虚功原理和有限元法推导了两者的各自振动方程组,通过位移协调方程及车桥相互作用联系方程把车辆和曲线连续梁桥振动耦合起来,建立了车桥耦合振动方程,给出了采用有限元通用分析软件ANSYS实现公路曲线连续梁桥车桥耦合振动的计算方法。数值算例表明,该计算方法仅经3次迭代即可获得较高精度及可靠的数值结果,并与连续梁按规范给定的基频估算值计算的冲击系数进行对比,在平整桥面情况下,两者基本吻合,在桥面不平度等级为C级时,两者相差较大,这说明按现有规范计算曲线连续梁桥的冲击系数,在某些特定的条件下,有可能是不安全的。从而为公路曲线连续梁桥动力性能评价寻求了一种方便可靠的数值分析方法。  相似文献   

14.
斜拉桥在列车通过时横向动力响应的分析方法   总被引:1,自引:0,他引:1  
以横摆和摇头为2个独立的自由度,建立列车轮对的振动微分方程。利用结构分析有限元法,推导非对称箱形截面梁单元的横向弯扭耦合刚度矩阵。讨论车桥系统横向振动微分方程及其求解方法。实例分析结果揭示了桥梁横向动力响应的规律,所讨论的分析方法可以有效地处理约束扭转及偏载问题。  相似文献   

15.
随着车辆质量、速度的逐渐增大和桥梁结构的逐渐轻柔化,车桥相互作用问题越来越受到关注。分别应用拉格朗日方程和模态叠加法建立三维非线性车辆模型和桥梁的振动方程,车轮与桥梁在接触点满足接触力和位移协调条件,利用迭代技术求解二者的相互作用问题。并以公路斜桥为分析对象,研究了不同斜交角、不同车辆行驶状态下以及不同行车速度情况下,横向不同梁的动挠度和动态增量。结果显示,斜交角、车辆行驶状态以及车速均是影响桥梁动反应的重要因素;当车辆行驶速度在30、40km/h左右时,梁的动态增量达到最大;而且随着斜交角的增大,离车辆行驶位置越远的梁的动态增量也越大。  相似文献   

16.
为了获得下承式系杆拱桥的汽车荷载冲击系数,在桥面间隔布置橡胶减速条带以形成周期性的不平顺输入,对下承式钢管混凝土系杆拱桥的动挠度进行现场实测。结合自编的车桥耦合(VBI)单元,建立车-桥耦合振动三维有限元分析模型,通过与实测结果对比验证VBI单元的正确性。在此基础上,引入另外3座标准拱桥以形成涵盖4种跨径的下承式系杆拱桥研究对象,输入规范规定的A~D级不平顺,研究车速、车重和桥梁基频对系梁冲击系数的影响。研究结果表明:汽车通过周期间隔布置的减速带时会形成稳态激振,当激振频率接近桥梁的前2阶基频时,引起的系梁动挠度响应最大;系梁的汽车荷载冲击系数随着桥梁基频的增加呈现出先增大后减小的趋势,当小汽车(总重低)行驶于差桥面(D级不平顺)时,规范值明显低估了系梁的冲击系数。  相似文献   

17.
为实现运营阶段中央扣对悬索桥动力特性及车载激励下短吊索响应影响的量化分析,进而为悬索桥设计及维养策略提供参考,基于已编制的车-桥耦合分析系统,引入制动惯性力及俯仰力矩模拟车辆制动力,建立了考虑车辆制动过程的车-桥耦合分析系统;以一座单跨地锚式悬索桥为工程背景,建立无、有中央扣2种缆梁连接体系的全桥空间有限元模型,研究中央扣对悬索桥动力特性及行车激励下短吊索缆梁相对位移响应的影响;采用建立的分析系统,考虑不同制动位置、初速度及减速度研究中央扣对短吊索制动激励响应的控制作用;考虑短吊索因缆梁相对错动产生的弯曲应力,建立车流激励下短吊索疲劳损伤的分析流程,研究中央扣对短吊索的等效疲劳应力幅值及疲劳损伤度的影响。分析结果表明:中央扣提高了悬索桥的纵飘及扭转刚度,改变了缆梁间的相对运动特性,减小了缆梁错动循环次数及位移幅值,可有效控制行车激励下60.3%以上的短吊索缆梁相对位移响应;考虑不同制动位置、初速度及减速度的取值,中央扣对短吊索缆梁相对位移幅值的减弱率可分别达92.9%、85.1%及85%以上,有效降低了短吊索制动激励响应对3个制动参数的敏感性;中央扣对随机车载下短吊索轴向应力幅值的影响较小,而对因缆梁相对错动产生的弯曲应力幅值影响较大,减弱了短吊索的等效疲劳应力幅值及疲劳损伤度,尤其是距中央扣位置最近的短吊索,疲劳损伤度降低了近71.4%;因此,中央扣可有效控制运营阶段悬索桥短吊索的车载激励响应。  相似文献   

18.
大跨径钢桥面铺装层车辆动响应影响因素分析   总被引:1,自引:0,他引:1  
从耦合振动的角度出发,研究大跨径钢桥面铺装层在车辆随机动荷载作用下的响应机制.将汽车等效为2自由度5参数模型,考虑桥梁表面不平顺产生的随机激励,建立车-钢桥面铺装耦合振动分析模型.利用模态分析与时变系数常微分方程求解方法,分析钢桥面铺装在车辆随机动荷载作用下的动力响应分布规律.定义由铺装层竖向位移、拉应力和拉应变表示的动力放大系数,研究车速、桥面不平度、铺装层开裂损伤和粘结层滑移等对动力放大系数的影响.结果表明,路面不平度、粘结层滑移是影响动力放大系数的主要因素,在进行大跨径钢桥面铺装结构设计时可考虑动力放大系数为1.5.  相似文献   

19.
Vehicle-Bridge Interaction   总被引:4,自引:0,他引:4  
With the emergence of high-speed trains, dynamic loads on bridges have changed. A method for estimation of the time-dependent vehicle-bridge interaction forces has been developed in the present paper. The increase (or decrease) of the bridge response due to dynamic effects is determined.

The moving constant-force problem is reviewed in some detail. Results obtained by the present method for the moving-mass problem are compared with existing experimental and theoretical results as reported in the literature. A parametric study of bridge responses is made. The parameters varied are the vehicle speed, the ratio of vehicle mass to bridge mass, the ratio of vehicle eigenfrequency to bridge eigenfrequency, and the relative damping of the vehicle. Finally, the influence of an initial bridge deflection is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号