首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 156 毫秒
1.
为探索高速公路交通荷载与降雨环境耦合作用下低路堤复杂的动力特性及长期性能保障技术措施,依托浙江省某低路堤高速公路为工程背景,结合现场埋深元件测试获取动应力、加速度、动位移等数据,分析了不同轴重和车速等条件下路基的动力特性差异,具体包括动力指标量值和竖向影响深度;考虑降雨环境对高速公路服役期路基动力特性影响,借助ABAQUS有限元分析软件建立"降雨环境-交通荷载-路基"三维数值模型,分析了降雨强度对路基服役期动力特性影响,具体包括中雨(1.25 mm/h)、大雨(2.5 mm/h)和大暴雨(10 mm/h)3类工况;考虑平原水网区低路堤高速公路受交通荷载和降雨环境长期耦合作用,结合路基填料设计、排水系统优化等角度,探讨了保障低路堤路基长期动力稳定性能的技术措施。结果表明:不同荷载条件下路基动应力、加速度和动位移存在差异,但沿路基深度均呈衰减趋势;动应力幅值与轴重成正相关,轴重20 t车辆的动应力幅值约为50 k Pa,约为轴重5 t车辆的动应力幅值的7~10倍;相对轴重10 t车辆荷载条件下,速度对动位移影响更大,轴重20 t车辆荷载条件对应动位移约0.60~1.02 mm;相比干燥路基状态,中雨、大雨和大暴雨降雨强度下路基动应力值提高约为3%~15%;合理路基填料设计可以提高低路堤刚度和强度,而完善的排水系统可降低交通荷载与降雨叠加引起的动力响应程度,均可在一定程度达到保障低路堤长期动力稳定的目的。  相似文献   

2.
采用有限元程序ABAQUS建立数值模型,研究有轨电车路基在荷载作用下的动应力变化规律,分析有轨电车动应力随着不同行车速度、路基横断面位置、路基深度的传递规律,同时分析不同基床结构与地基土下动力响应的变化情况。结果表明:动应力在路基中呈现出两端大,中间小的特点,总体上呈马鞍形分布;有轨电车轮载所引起的附加应力快速衰减,在深度达到0.7 m左右时,动应力衰减一半;路基结构中的动应力随基床结构弹性模量的增大而逐渐减小,并且受基床底层弹性模量影响更大;随着地基土弹性模量增大,路基结构内动应力会略微增大,但路基结构的竖向位移会大大减小。  相似文献   

3.
以京化(北京-阳原县化稍营)高速公路二期路基工程为研究对象,借助非线性有限元数值分析软件AN-SYS进行了数值仿真模拟,研究分析车辆动荷载作用下路基的动力特性。结果表明:车辆动荷载作用下,路基动应力随深度的增加而呈衰减趋势;车辆动荷载对路基竖向动应力值σy影响较大,而水平向动应力值σx影响相对较小;车速差异对路基动应力值影响显著;动应力值沿水平方向衰减较快,其传递距离存在一定的范围。  相似文献   

4.
鉴于考虑路面厚度和材料刚度影响的 J.Boussinesg修正公式所得的路基工作区深度过小,仅至上路床部位,与实际情况不符。提出了基于竖向路基动应力分布规律确定路基工作区深度的方法。通过比较模型试验和计算模拟在竖向动应力和动位移沿深度方向的衰变规律,发现衰变规律在路基工作区深度范围符合性较好,验证了该方法的正确性与可靠性。对典型结构组合下路基动应力与工作区深度进行计算分析,分析结果表明:在标准汽车荷载100、130 kN 作用下,路基顶面动应力为6.4~13.4 kPa,相应的工作区深度为0.6~0.9 m。在重交通和特重交通的汽车荷载170 kN、200 kN 作用下,路床顶面动应力为12~20.6 kPa,相应的工作区深度为1.0~1.2 m,已进入上路堤范围0.2~0.4 m。  相似文献   

5.
通过建立三维地基与路基模型,对交通荷载作用下风积沙换填地基与风积沙低路基动力响应进行了数值计算,分析了竖向位移、应力沿深度变化的规律以及动力响应的滞后效应,得到了动力时程曲线,确定了路基动力响应影响深度约为1.9 m。  相似文献   

6.
为了研究交通荷载对高速公路路基的影响,在不同交通荷载、车速及车型的情形下,对谷竹高速公路27标段路基进行了动态竖向应力测试。结果表明:在荷载作用下,路基竖向应力随深度增大而逐渐衰减,且在路基浅层衰减较慢,然后加速,达到一定深度后,再次变缓。随着交通荷载增加,路基工作深度及竖向应力也会随着增大,但荷载增到较大后,工作深度的增幅会降低。在相同交通荷载情形下,路基浅层竖向应力会随着行车速度增大而减小,但车速变化对路基的工作深度影响较小。车型对路基的影响与理论相符,增加后轴轮胎数目可以减小交通荷载对路基的影响。  相似文献   

7.
针对秦沈客运专线场地条件,采用有限元-无限元相结合的手段,建立列车荷载作用下路基结构动力反应的有限元数值模型,分析了列车荷载作用下,路基动力响应的分布规律,并探讨了列车速度对路基振动反应的影响规律。结果表明:路基土中竖向动应力幅值随深度增加而迅速衰减;随着列车速度的增加,路基顶面的动应力幅值呈增加趋势;列车荷载对轨道路基的影响主要体现在基床部位,因此对于高速铁路需要对其进行加强。所得结论,为铁路路基设计和加固提供了理论依据。  相似文献   

8.
将列车荷载简化为一激振力并作为等效轮轴荷载,运用FLAC3D内置的FISH语言编程实现列车荷载的定时、定点施加,从而模拟列车在轨道结构上的移动加载过程。以遂渝线板式无砟轨道路基结构为对象,建立三维动力分析模型,基于FLAC3D计算平台,利用编制的动力加载程序对轨道路基结构进行了动力响应计算,分析了列车移动荷载作用下路基各结构层的动位移、动应力响应特性以及动响应在路基深度范围内的衰减特性,并以基床表层为研究对象,着重考察了其刚度变化对路基动力响应的具体影响。  相似文献   

9.
为预防和整治路基病害问题,查明长期服役状态下的路基动应力分布是关键因素之一.依据相似理论设置了精细化的小比例路基模型;通过对路基模型施加简谐荷载,分析加载幅值、频率等因素对路基动应力的影响,并以路基的应力状态为指标来判定路基工作区深度及交通荷载的影响范围.结果 表明:交通荷载的影响范围主要集中在轮载的正下方,水平方向的有效作用距离几乎可以忽略不计,在实际公路病害整治中可定点整治;路基动应力随加载幅值增大而增大,随加载频率增大而减小,且加载幅值对路基的影响程度要显著高于频率的影响程度;一般公路路基工作区深度为100~110 cm,施工时应确保此范围内路基土体的填筑质量.  相似文献   

10.
针对滨海新区软基特点,在现有道路工程低填方路堤或挖方段软土路基处理深度计算方法的基础上,根据车辆对道路产生的动应力影响,提出了考虑车辆动应力条件下的软土路基处理深度研究计算方法。分析确定车辆荷载模型,并通过室外道路车辆动应力采集,验证模型准确性。通过试验采集冲击数据,采用ABAQUS软件进行数值模拟,验证了土中动应力衰减的道路模型。在此基础上模拟计算出不同轴重、速度及交通量下的动应力影响深度,参照地基沉降计算方法及路基工作区定义,确定软土地基的处理深度,得到以下结论:考虑车辆动应力及路面铺装情况下,高速公路低填方软土路基处理深度应在1.10 m以上,一级公路为1.23 m以上,二级公路为1.31 m以上,三级公路为1.4 5m以上,视重载交通情况软土地基处理深度相应增加25~40 cm。  相似文献   

11.
路基路面结构受交通动荷载重复作用,表现出疲劳特性,并会产生不可恢复的残余塑性变形。通过3组室内大比例模型试验,研究了全风化花岗岩、全风化花岗岩水泥稳定土和土工格室加强等不同路基结构形式的路基路面结构受交通动荷载作用的动力特性,分析了路基路面结构动应力应变分布规律,得到路基路面结构动应力、应变和永久变形随车辆荷载大小、车辆荷载通过量(对应加载次数)、运行速度的变化规律,试验论证了全风化花岗岩及其水泥稳定土和土工格室加强作为高速公路路基填料的可行性和适用范围,评价了路基处理的效果,确定了路基质量控制标准,对高速公路的设计与施工具有指导意义。  相似文献   

12.
通过大型有限元软件ANSYS,建立轨道-路基三维有限元模型,分析路基动应力沿线路横向和纵向的分布规律,以及不同轴重和基床表层模量对路基动应力的影响,为以后重载铁路基床的设计和养护维修提供参考。研究结果表明:路基面竖向动应力沿线路横向和纵向的分布都不均匀,横向大致呈“M”形。基床表层动应力的衰减最为急剧,约为40%。随着轴重的增加,路基各层竖向动应力都在增加。基床表层弹性模量为150 MPa时,轴重每增加5 t,基床表面竖向动应力最大增加26.1%。40 t轴载下,基床表层弹性模量每增加50 MPa,基床表面竖向动应力最大增加2.68%。  相似文献   

13.
通过讨论原路基工作区深度确定方法的局限性及应用于水泥混凝土路面时的不合理之处,提出以荷载作用于水泥混凝土面板不同荷位时的路基应力比(板角、板边时的路基应力与板中时的比值)作为水泥混凝土路面下路基工作区深度的控制指标。采用有限元方法,讨论了路基应力扩散特征和工作区深度,给出了路基深度0.8m处的应力比取值范围。结果表明:不同轴型(单轴、双轴和三轴)及不同公路等级的路基工作区深度变化在0.65~1.55m之间,原0.8m的路基工作区深度已不能完全满足现在路面结构和轴荷条件下的情况。在综合考虑轴荷、路面结构和公路等级基础上,推荐了路基工作区深度值。  相似文献   

14.
为研究高铁高填方路基高速液压夯实施工参数,在沪昆高铁芷江段施工现场进行原位试验,测试了夯击能36 k N·m作用下路基的沉降和动应力,分析了动应力随夯击次数和深度的变化规律,沉降量与夯击次数的关系,确定了有效加固深度为1.75 m和最佳夯击次数为9击,并对其加固效果进行评价。试验结果表明:在夯击能36 k N·m累计9击作用下,路基压实度在1.75 m深度范围内都达到了95%,路基表面Evd平均提高了14%,K30平均提高了26.31%,CMV平均提高了18.63%,路基压实质量满足设计要求,高速液压夯实效果显著。建议对同种条件下的路基每填高1.75 m时,采用夯击能36 k N·m,累计作用9击对其进行加固。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号