首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为保证悬拼施工时斜拉桥钢箱组合梁的精确匹配连接,以台州湾跨海大桥通航孔桥为背景,采用有限元法研究待安装梁段与已安装悬臂梁段在施工阶段荷载作用下的竖向变形和桥面板受力,并分析吊装节段长度、吊机位置及强制匹配措施对截面竖向变形与桥面板受力的影响。结果表明:由待安装梁段自重引起的吊机反力是导致匹配截面产生较大相对竖向变形的主要因素,两侧匹配截面均在边腹板附近的相对竖向变形差最大;斜拉索锚固区和桥面吊机处混凝土桥面板开裂风险较高;吊装节段长度对匹配截面局部变形的影响较小,但其长度增加会增大局部桥面板混凝土主拉应力;通过调整桥面吊机横向位置可减小匹配截面相对竖向变形差,且中腹板强制匹配较边腹板强制匹配对桥面板受力影响小,采用“边腹板吊装+中腹板强制匹配”施工方法可实现已安装悬臂梁段与待安装梁段的精确匹配。  相似文献   

2.
刘宏波  任虹昌  冯玉祥 《公路》2024,(3):176-181
针对斜拉桥分体式钢箱梁悬臂拼装过程中匹配高差较大的问题,以黄茅海跨海通道工程中高栏港大桥和黄茅海大桥为研究背景,使用ANSYS软件建立板壳精细化有限元模型,研究了分体式钢箱梁悬拼匹配过程中被吊梁段和已成梁段的横向变形规律,分析了桥面吊机纵横向站位、梁段起吊、吊机自重、已成梁段自重及斜拉索作用对分体式钢箱梁悬拼匹配高差的影响程度,探讨了分体式钢箱梁悬拼匹配高差的调节方案。结果表明,在满足净空条件下,桥面吊机横向应尽量靠近斜拉索布置,桥面吊机前、后支点均应位于斜拉索所在横隔板上;被吊梁段竖向变形及等效应力均较小,无需设置临时加固措施;设置横向预拱度以抵消恒载作用下分体式钢箱梁产生的横向变形,通过T形反力架可有效调整分体式钢箱梁间的匹配高差。本研究形成的吊装优化措施可为同类型分体式钢箱梁的悬拼施工提供参考。  相似文献   

3.
深中通道中山大桥主桥为主跨580 m的双塔双索面钢箱梁斜拉桥,主梁采用流线型扁平钢箱梁,梁宽46 m(含风嘴),主梁共划分69个节段,标准段长18 m、最大吊重约429 t,采用桥面吊机双悬臂吊装。由于钢箱梁节段自重大、宽度较大、横桥向竖向刚度较小等,在桥面吊机悬臂吊装过程中,会出现钢箱梁匹配面高差过大(最大约63 mm)的问题。为解决该问题,实现梁段精确匹配安装,提出3种钢箱梁吊装匹配方案:“门架+拉索”方案、“牛腿反力架”方案、“一字梁锁定+C形焊缝+部分张拉斜拉索”方案。经有限元仿真分析综合比选,最终选择“一字梁锁定+C形焊缝+部分张拉斜拉索”方案。该方案以箱梁竖腹板为定位点,提前焊接一字梁,采用法兰连接后锁定待拼梁段,部分焊接拼接面内箱梁形成C形焊缝;通过提前挂索并张拉部分斜拉索,减小匹配面已拼梁段横桥向竖向变形,达到箱梁匹配要求。施工中采取了匹配高差调节、局部应力控制、拼接缝宽控制等关键技术,最终将该桥钢箱梁匹配面高差减小至9.8 mm以内,钢箱梁局部应力可控,斜拉索初张过程中钢箱梁应力增量小于10 MPa,且各箱梁节段拼接缝宽可控制在1 cm以内。  相似文献   

4.
椒江二桥主桥为主跨480m的双塔双索面斜拉桥,主梁采用分离式半封闭双箱组合梁,组合梁采用桥面吊机悬臂吊装。由于主桥梁段重、宽度大等特点,给桥面吊机的设计带来了一定的难度。椒江二桥桥面吊机在经过各种综合分析比较之后,选取采用分离式低重心液压千斤顶提升的结构形式,前后支点间距加大到2个梁段长度,减小了前支点的反力和主梁的变形量。该文主要对椒江二桥桥面吊机的结构设计方面进行介绍。  相似文献   

5.
椒江二桥主桥为(70+140+480+140+70)m双塔双索面半封闭钢箱组合梁斜拉桥,0号块、辅助墩及边跨密索区梁段采用搭设支架浮吊安装,其余梁段均采用桥面吊机悬臂安装.为在中跨合龙前合理避过台风高发季,对比分析主梁单节段、双节段循环安装的工期.通过优化施工安装方案,增加临时加固措施,确定主梁采用双节段循环安装方案.双节段循环安装时施工梁段分次吊装,2条湿接缝一次施工,梁段精确调位及匹配需在温度相对恒定时进行;双节段循环安装状态下在湿接缝处有组合梁和钢梁2种截面形式,刚度发生突变,为补强湿接缝处钢梁引起的刚度减小,增加临时支撑加固措施.  相似文献   

6.
牌楼长江大桥主桥为主跨730m的双塔混合梁斜拉桥,主跨钢箱梁采用桥面吊机吊装。针对钢箱梁传统吊装技术因匹配高差产生的附加剪切应力问题,提出"梁重转移"吊装技术,在待拼装节段吊装到位后,先临时锁定节段间翼缘板和斜腹板,然后提前张拉待拼装节段的斜拉索至桥面吊机松钩,再临时锁定节段间顶、底板,调整2次临时锁定区域的压力状态,最后施焊,第2次张拉待拼装节段的斜拉索,达到减小匹配高差和附加剪切应力的目的。采用ANSYS软件建立钢箱梁节段模型,在钢箱梁吊装过程中监测钢箱梁的竖向变形和竖向应变,对比2种吊装技术下匹配高差和附加剪切应力可知该技术能大幅减小匹配高差和附加剪切应力。该技术已成功应用于该桥钢箱梁吊装施工。  相似文献   

7.
港珠澳大桥青州航道桥为主跨458 m的双塔双索面钢箱梁斜拉桥,主梁采用扁平流线型钢箱梁。有索区钢箱梁采用悬臂拼装方案施工,无索区钢箱梁采用整体吊装方案施工。塔区大节段钢箱梁(0号和1号)采用2 200 t浮吊整体吊装,吊装就位后,采用4台三向千斤顶精确调整其平面位置和高程。塔梁结合部2号梁段采用不平衡吊装工艺施工,针对不平衡吊装产生的弯矩,从纵向、横向及竖向进行塔梁临时固结,并采用"临时配重块+临时支撑+竖向固结拉索索力调整"的方案控制钢箱梁线形;塔梁结合部2号梁段安装后,采用桥面吊机悬臂对称吊装标准梁段,在标准梁段对称吊装过程中采取相应的线形误差控制措施,成桥后主梁标高最大误差-45 mm,满足规范要求。  相似文献   

8.
上海闵浦二桥主桥为独塔双索面连续钢板桁组合梁斜拉桥,跨径组合为251.4 m(主跨)+(147+38.25)m(锚跨),其主梁为全焊接结构,主梁施工采用工厂整节段预制,现场整节段安装的方法,节段预制在工厂先进行平面桁片拼装,再进行立体总拼,拼装时采用N+1匹配技术,现场吊装支架段采用1 200 t浮吊安装,标准段采用260 t步履式桥面吊机安装,钢梁节段在工地采用对接焊接施工.  相似文献   

9.
苏通长江公路大桥为主跨1088m钢箱梁斜拉桥,上部结构标准梁段宽度达41m,重量达450t,采用桥面吊机悬臂安装。由于桥位处于长江黄金水道,航运密集,对梁段吊装和通航安全管理均提出了很高要求。同时,主桥上部结构采用几何控制法,要求梁段间无应力匹配,并在安装现场重现预拼装无应力线形,对匹配及主梁安装线形控制技术也提出了很高要求。文章结合苏通大桥上部结构施工,介绍了宽、重钢箱梁节段吊装、匹配和安装线形控制要点。  相似文献   

10.
泉州湾跨海大桥主桥为(70+130+400+130+70)m双塔分幅式组合梁斜拉桥,组合梁采用整体节段安装、节段间桥面板胶拼等施工工艺。为验证该桥整体节段胶接缝悬臂拼装工艺的可行性,确定匹配连接原则,掌握已成梁段与被吊梁段的横向相对变形量,选取5个梁段进行足尺模型试验,并与有限元模型理论值进行对比分析。结果表明:整体节段悬臂拼装匹配连接受梁段制造误差以及横向受力差异的影响较小,胶接缝悬臂拼装工艺是可行的;匹配口实测横向相对变形最大为2.5mm,较理论计算值偏小,表明该桥实际刚度较大。  相似文献   

11.
泉州湾跨海大桥主桥为双塔分幅式组合梁斜拉桥,跨径布置为(70+130+400+130+70)m=800m。单幅主梁为PK式流线形扁平组合梁。该桥主梁采用组合梁段悬臂拼装施工,梁段间采取"干拼法"连接,钢箱梁采用全焊接连接,在混凝土顶板之间涂抹环氧胶并施加预应力连接。该桥主梁施工主要包括预制拼装和架设两个阶段,在预制拼装阶段,采用钢桁架方案实现了主梁梁段反拱;在架设阶段,采用大型起重船和桥面吊机吊装。因此对主梁施工期间施工安全风险事态进行识别和评估,并提出了相应的防范措施。  相似文献   

12.
苏通大桥多功能桥面吊机设计与使用   总被引:1,自引:0,他引:1  
苏通长江公路大桥为主跨1088m钢箱梁斜拉桥,上部结构标准梁段采用桥面吊机悬臂安装.由于主桥通航净空高,而且主梁节段宽、重,加上桥区恶劣的气象和水文条件,以及长索梁端牵引需要,对桥面吊机结构和性能提出了较高要求.该文介绍了苏通大桥集梁段吊装和长索牵引角度调整装置功能为一体的桥面吊机的设计与使用要点.  相似文献   

13.
综合国内外桥梁顶推合龙工艺、温度配切合龙工艺的特点,提出适合北方严寒地区及现场特点的单侧桥面吊机起吊+温度配切+精确控制合龙单缝的合龙方法——合龙段配切,单侧顶推主梁提供合龙段吊装就位空间,单侧桥面吊机起吊合龙段,一端焊接,回推主梁;另一端焊接。该文详细介绍合龙实施条件、关键施工参数、重要施工措施及实际施工情况。  相似文献   

14.
新建商合杭铁路芜湖长江公铁大桥主桥为(99.3+238+588+224+85.3)m的钢箱板桁结合梁斜拉桥,主梁上层为板桁结合,下层为钢箱结合钢桁梁。该桥钢梁划分为89个铁路面梁段单元和94个公路面梁段单元,采用分段吊装施工,钢梁架设采用"浮吊辅助架设墩顶节段+桥面架梁吊机悬臂架设"的总体方案,设中跨合龙口。首先利用浮吊起吊,采用支架法架设2号和3号桥塔墩墩顶的3个钢梁节段,然后在公路桥面上各安装2台桥面架梁吊机进行双悬臂架设,悬臂架设至辅助墩前方时,利用浮吊起吊安装辅助墩墩顶钢梁节段;当悬臂架设至边墩前方时,采用"浮吊+支架"辅助桥面架梁吊机悬臂架设边墩墩顶钢梁节段;最后利用2号墩侧架梁吊机提升中跨合龙段进行中跨合龙。  相似文献   

15.
望东长江公路大桥主桥为主跨638m的双塔双索面组合梁斜拉桥,其上部结构采用工厂化、装配化的方案架设。为解决组合梁整体吊装施工时存在的桥面板开裂及梁段不匹配的问题,采用RM2006和ANSYS软件分别建立全桥及梁段局部有限元模型,对斜拉索分次超张退张法和防错台架设法进行研究,提出一种基于节段全过程状态(内力状态、几何状态)优化的上部结构装配化架设方法。结果表明:斜拉索分次超张退张法可优化节段施工全过程内力,解决了新梁段起吊对前序梁段引起的较大桥面板拉应力问题;通过斜拉索张拉与钢主梁工地连接工序的优化调整,改善了已架设梁段与待架设梁段匹配时的几何状态,保证了梁段匹配的可靠性。  相似文献   

16.
采用悬拼施工的斜拉桥,由于钢箱梁实际重量与理论重量的偏差会对施工监控精度产生明显的影响。为了解决钢箱梁称重的问题,在上海长江大桥施工监控中,监控组设计并实施了一套实时称重系统。通过在吊索锚具处安装高精度压力传感器,并在桥面吊机臂上加装调理器和无线通信网络,不仅实现了吊装过程中的主梁精确称重,而且在主梁匹配过程中可以实时监控桥面吊机索力,为施工监控提供了准确的信息。介绍系统的设计方案及现场应用情况,并验证系统方案的可行性。  相似文献   

17.
芜湖长江三桥主桥为主跨588 m的双塔双索面斜拉桥,其钢主梁采用三角形桁式的双主桁布置,上层为板桁组合结构、下层为箱桁组合结构,采用分层变幅法进行钢主梁标准节段的悬臂架设。钢梁起吊设备选择整体底盘双臂杆结构,变幅范围为5~22 m的变幅式架梁吊机,站位于上弦杆节点处。钢梁采用“3+1”分层匹配法制造,运输船分层纵列运输至桥位。每个标准节段分2次吊装,先吊装下层节段(含腹杆),再吊装上层节段。节段对接时利用架梁吊机起落和变幅精确调整空间位置,打入一定数量的冲钉后即可松钩。2层吊装完成后进行节段间的高强度螺栓连接和焊接,然后架梁吊机向前走行,继续循环进行下一节段架设。分层变幅法架设技术利用变幅式架梁吊机将钢桁梁标准节段分下、上2层分别吊装,是继散拼法、桁片法、整节段法等之后钢桁梁架设方法的一个创新。  相似文献   

18.
南宁市五象大桥主桥为(45+100+300+100+45)m双塔双索面钢箱梁斜拉桥,主梁为横向分离的两全焊流线型扁平封闭钢箱梁。针对该桥钢箱梁施工难点,提出了对称悬臂拼装施工(方案1)和非对称悬臂拼装施工(方案2)2种钢箱梁施工方案,通过设备、工期及河道水位影响等方面的比选,采用方案2施工。该方案主要施工设施包括变幅式桥面吊机、边跨临时支架及顶推系统、滑移支架和桥塔墩墩旁托架及滑移系统。在边跨无水区域布置滑移支架及临时支架,安装变幅式桥面吊机,采用顶推系统后退滑移及吊机前移的方法安装边跨钢箱梁;中跨侧钢箱梁采用单侧桥面吊机悬臂拼装,利用边跨已架钢箱梁,调整索力实现非对称悬臂拼装施工。  相似文献   

19.
池州长江公路大桥主桥为主跨828 m的双塔双索面非对称混合梁斜拉桥,除北边跨主梁采用混凝土箱梁结构外,其余主梁均采用钢箱梁结构。钢-混结合段长11.2 m、全宽39.0 m,布置在Z3号墩向跨中方向3 m的位置处;采用承压传力结构形式,通过剪力钉与现浇混凝土连接,并设置纵向预应力钢束。根据现场施工条件,先利用800 t浮吊将结合段钢梁吊装至钢管滑移支架,并利用滑移系统将其滑移至起吊位置;然后利用2台300 t变幅式桥面吊机、采用双悬臂法对称吊装钢梁,钢梁吊装到位后进行纵向、轴线及标高调整;钢梁精确定位后进行临时锚接及钢梁环口精确匹配,利用支撑锁定支架进行钢梁临时锁定;钢梁锁定后绑扎钢-混结合段钢筋、安装预应力管道,浇筑箱梁混凝土,完成钢-混结合段施工。  相似文献   

20.
邹力 《桥梁建设》2020,50(2):62-66
牌楼长江大桥主桥为主跨730m的双塔混合梁斜拉桥,主跨扁平钢箱梁采用桥面吊机整体吊装、悬臂拼装法施工,施工中采用“梁重转移”技术将待拼装节段与已安装节段分2次进行临时锁定,并提出采用特制的压力调节装置调节该区域受力。为分析该装置对临时锁定区域的受力调节效果,采用ANSYS软件建立钢箱梁节段模型,模拟施工中临时锁定区域的压力调节过程,分析压力调节前、后临时锁定区域的受力及变形,并对实际应用效果进行对比分析。结果表明:压力调节装置对临时锁定区域的水平受力优化效果明显,对临时锁定区的相对高差影响不明显;该压力调节装置的实际应用效果较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号